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Abstract 

The phase field model  provides an efficient numerical means to accurately  model  the 

complex morphologies observed  in  dendritric solidification of metals  and  alloys. In this 
% 
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report we review  the  basic  formulation of the phase field  model  and  demonstrate its 

relation  to  the sharp interface  description. In dendrite solidification  at  low  undercooling 

or  low supersaturation there exists several disparate length scales and  implementation of 1 

the phase field technique in this important  limit  has  remained a significant  challenge.  We 

shall  review several techniques  which  have  been  successful in overcoming  the  length 

scale  problem. Techniques include  the  thin interface limit, the  use of adaptive  mesh 

refinement  and the use of random walkers. 

-,.!A 

). 

Despite the demonstrated success of the  phase field method,  application of the  technique 

to  real  alloy systems remains a formidable  challenge.  Several  materials  parameters, 

required as input to continuum  models,  are difficult, if not  impossible, to measure 

experimentally. The liquid state diffusion coefficient, the  solid-liquid  interfacial free 

energy and the kinetic coefficient relating  the  velocity of a planar interface to  the 

undercooling are examples of difficult  to  measure  quantities  required  in  the  phase field 

formulation. More significantly, the  small  anisotropy of the  latter two quantities is 

essential and  must be included  in  the  modeling  problem. In this report  we  will  describe 

in detail molecular  dynamics  and  Monte  Carlo simulations which  have  recently  been 

developed to compute the  necessary  materials  parameters  and  the  anisotropies.  Finally, it 

will  be shown that parameters  derived  from atomistic simulation  methods,  when 

combined  with phase field modeling,  can  accurately  reproduce  the  experimentally 

measured dendrite growth  velocity as a function of undercooling in pure  Ni. 
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1. Introduction 
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The term dendrites refers to the  branched tree-like solid spikes which propagate into the 

liquid during the solidification of supercooled pure melts or supersaturated alloys. In a 

cast, brazed or welded  component,  many important microstructural characteristics, such 

as the grain size and solute redistribution, are largely determined by the details of 

dendrite formation and  growth.  Due to the  importance of dendrite growth in controlling 

microstructure and hence mechanical integrity, understanding the underlying physics of 

the phenomenon has  remained an ongoing challenge within the metallurgical community 

for several decades. Dendritic solidification is also a classic example of pattern 

formation in  nonequilibrium  dissipative  systems. There exist many examples throughout 

nature of transformations which  spontaneously generate patterns of a fixed period and, in 

the case of dendrites, a specific velocity of propagation. In this respect dendrite 

formation shares many  important  characteristics  with  such diverse problems as cellular 

flame fronts and  Benard  convection  from  the field of fluid dynamics and the clustering 

behavior of dictyostelium amoeba  from  the field of biology. Despite the technological 

and scientific interest  of  dendritic  solidification,  modeling  of the process remains a 

formidable challenge. 

8 

The moving solid-liquid boundary  inherent  in  any solidification problem and the complex 

morphological features of a dendrite render  the modeling task seemingly intractable. Yet, 

about ten years ago it was demonstrated  that the phase field method could generate 

realistic looking dendrites and since that  time it has  emerged as the method of choice for 

modeling solidification. The technique  was originally designed to overcome the tricky 

numerical obstacle of front tracking  by defining a function, the phase field, which varies 

continuously, albeit rapidly, across  the  solid-liquid boundary. The evolution equation of 

the phase field itself, when  coupled  with  the diffusion of heat or solute, essentially recasts 

the moving sharp interface problem  onto a more manageable finite difference solution of c 

a set of partial differential equations. Unfortunately, early studies on the phase field 

model also uncovered  technical  limitations  which  need to be addressed  in order that  the 
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ultimate goal - accurate modeling of dendrite  growth  in real alloy systems - can be 

successfully achieved.  The first obstacle is one of numerical implementation. At  low 

undercooling or supersaturation, there exists  three important length scales in  the dendrite 

problem each of  which  can differ by  several orders of  magnitude. To capture the low 

undercooling limit, a  straightforward finite difference solution on  a fixed grid  is simply 

too large a task on  present  day  computers. In recent years, several ingenious tools have 

been developed for successfully  bridging  length scales, these include, the thin interface 

approach, adaptive mesh  refinement  and  the  use of random  walkers. All of these 

methods have shown  unqualified  success. The second hurdle encountered when applying 

phase field techniques to actual  alloys is one of materials  parameters. There are several 

quantities required as input to solidification  modeling  which are difficult and  in some 

cases impossible to measure  experimentally. Three important parameters stand out: the 

solid-liquid interfacial free energy, the  kinetic coefficient and,  in the case of alloy 

solidification, the liquid state solute  diffusion  coefficient. In addition, the microscopic 

solvability theory of dendrite  growth  demonstrates that crystalline anisotropies, even 

though  very small, determine the steady state dendrite velocity and shape. Therefore, 

even more important than the actual  values  of  the interfacial free energy and kinetic 

coefficient is the, small directional  dependences of these quantities. It is now apparent 

that molecular dynamics  simulations  using accurate descriptions of  the interatomic 

potentials in metals  can  provide  many of the  materials parameters which are difficult to 

obtain in the laboratory. The purpose of the current review is to summarize the 

aforementioned recent  advances  in  continuum  and atomistic modeling techniques which 

have  been developed to advance the field of dendritric solidification. 

Much of the theoretical  and  mathematical underpinnings of the phase field model are 

now firmly established and the early successes of the technique are now  well  known. 

Therefore, since it is impossible to cover the entire field in the present review, we  will 

concentrate on the latest developments of efficient numerical methods and the emerging 

use of atomistic simulation as a  tool  to  provide  necessary input to the dendrite growth 

problem. The review is organized as follows. The first section, continuum modeling, 

starts with  a  summary of the sharp interface  approach  and the numerous important 
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findings generated prior to the development of phase field method. Subsequently, the 

basic equations and parameters of the  phase field model are reviewed and the numerical 

challenges are discussed. Finally, techniques for overcoming the  numerical difficulties 

are described. The second section  concerns atomistic simulation approaches.  Here 

techniques for computing diffusivities, interfacial free energies and the kinetic coefficient 

are outlined in detail. Particular attention is paid to the computation of crystalline 

anisotropies. The review concludes with a success story; an example of how results from 

molecular dynamics simulations can  be  combined  with phase field techniques to predict 

the dendrite velocity vs. undercooling behavior for pure Ni. The modeling results, 

containing no adjustable parameters, are in  very good agreement  with experimental data. 

2. Continuum Modeling 

The starting point of any continuum description of dendrite growth is the diffusion 

equation describing the evolution of  an appropriate field, temperature in the case of a 

pure material and the concentration field for the case of an  alloy. Historically, boundary 

conditions were  then specified at  the  solid-liquid boundary where the interface was 

assumed to be infinitely sharp. The preferred method of solidification modeling, namely 

the phase field model, replaces the sharp  interface  with a diffuse boundary  and conditions 

valid at the evolving boundary need  not  be specified. Nevertheless, it is important to 

review results obtained from the sharp  interface assumption for two  reasons. First, 

several key findings critical to our present  day understanding of dendrite growth  have 

been obtained under the sharp interface model and second, the infinitely sharp boundary 

represents an important limit with  which to set parameters and test the validity of various 

phase field formulations. 

Also, in this section we shall review  the  thermodynamic  and kinetic formulation of the 

phase field method. Although the method  very quickly proved to be effective in 

overcoming the formidable numerical  problem  of tracking a moving interface, several 
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problems surfaced which  prevented an efficient application of the  phase  field  method  in 

all cases. The most  notable  obstacle  is  the  presence  of three very disparate length scales 

in  the dendrite growth problem  at  low  undercoolings.  Below  we  will  review several 

numerical schemes which have recently  been  proposed to alleviate the length scale 

dilemma. 

2.1 Sham Interface Models 

2.1.1 Basic Equations 

Consider the problem of dendrite solidification  in  a supercooled pure material. The 

temperature field is governed  by 

aT - = D , V ~ T  
at 3 1  A. I 

where D,  is the thermal diffusivity. The diffusion equation is supplemented  by two 

boundary conditions specified at  the solid-liquid interface.  Conservation of heat  demands 

that the rate of latent heat  generation due to the solidifying boundary  be  removed  by 

diffusion through  the solid and  liquid  phases. The conservation  law  leads to a 

relationship for the velocity normal to the interface, V,, , given  by: 

2.2 

Here L is the latent heat and c ,  is the  constant pressure heat capacity, the  two quantities 

given on a unit volume basis. The quantities 6.  VTI,., are the  gradients  in  temperature 

c 

normal to the interface for the solid (9 and liquid (L) phases, 2 is the normal  vector to 

the interface pointing into the liquid phase.  In the condition 2.2 it is  assumed  that c, and 

D, are equal in both phases, that is, the symmetric model of solidification is invoked. 

The second boundary condition to the dendrite growth problem  in  pure  materials is a 

specification of the temperature along  the interface, T, : 



2.3 

where TM is the  melting  temperature,  the 6i terms are the  local  angles  between  the 

interface normal  direction f i  and  the  two  local  principal  directions  on the solid-liquid 

boundary  and Ri denotes  the  two  principal  radii of curvature. The parameter 7 is the 

interfacial free energy of the  interface  and p i s  known  as  the kinetic coefficient. 

Equation 2.3 illustrates the fact that  the  interface  undercooling, AT = TI - T, , is the sum 

of two effects. The capillary  induced  undercooling,  or the Gibbs-Thomson effect, yields 

the melting point depression  due to the  interface curvature and is given  by  the first term 

on  the RHS in the  above  boundary  condition.  The final term is the kinetic undercooling 

which represents a suppression of the interface  temperature  due to the attachment of 

liquid atoms to the  solid  phase.  Notice  that  Eq. 2.3 establishes an operational definition 

of the kinetic coefficient, it is the  proportionality  constant  between the velocity of a 

planar boundary and  the  interface  undercooling, V = pAT . 

In eq. 2.3 the crystallographic  orientation  dependence of  both 7 and p have  been 

explicitly included, as will  be  seen  below  the  anisotropy of these parameters are 

absolutely essential to  the  dendrite  growth  problem.  Nevertheless, it is of interest to 

rewrite the system of equations in scaled  form  using an isotropic  value for 7 . Let  the 

dimensionless temperature field be  given  by u = (T - T, ) / ( L /  c,  ) . Then eqs. 2.1-2.3 can 

be recast 'as: 

au 
at - = D,V2u 

2.4 

where B = cP / ( L p )  is the  scaled  kinetic  coefficient  and do = yc,T,c, / L' is known  as 

the capillary length. To complete  the  basic  equations of the  sharp interface model of 

dendrite growth an initial  condition  must  be  specified  in  the  form of a dimensionless 

undercooling given  by: 
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A =  T,  -T, 
Llc,  2.5 

where T, is the initial  temperature of the  melt.  All  of the above  governing  equations  are 

valid for a pure melt,  a  discussion of the  growth  laws  in the case of a  binary  alloy  will  be 

postponed  until  section  2.2.5. 

2.1.2 The Ivantsov Solution 

As alluded to in the introduction  the  sharp interface model is very difficult to solve 

numerically. The moving  boundary,  the  complex  branched  morphology of the dendrite 

and  a curvature dependent  boundary  condition  all  render the sharp interface description 

virtually intractable. Nevertheless,  important  insights into the  nature of dendrite growth 

can be gleaned  from an analytic  solution  obtained  under  a set of rather severe 

approximations. In 1947 Ivantsov [I] examined the problem of  an isolated dendrite 

propagating at a  constant  velocity Vin a  supercooled  liquid  with initial temperature A. In 

reality  a dendrite observed  in  a  frame of reference  moving  with the dendrite tip  does  not 

maintain  a constant shape  due to the  formation  and  growth of sidebranches. Thus, as a 

first approximation, Ivantsov  assumed  the  dendrites to be free of sidebranches  and  the 

shape of the resulting  “needle  crystal’’  was  taken  to  be  a  paraboloid  of  revolution  with a 

radius of curvature at the tip  given  by p. A second  major  assumption is the neglect of 

both capillarity and  kinetic  undercooling,  resulting  in uI = 0.  In a parabolic coordinate 

system, the steady state diffusion  equation  can  be  solved  analytically for a  vanishing 

interface temperature and  when  applying the conservation of heat constraint the 

following relationship was  found: 

where E, is the exponential  integral: 

2.6 

E, (x) = r$’ 
X X  2.7 
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and p = pV / 2 D ,  is an  important dimensionless parameter  known as the Peclet  number. 

Subsequent to the Invantsov work,  Horvay  and  Cahn [2] treated the analogous problem  in 

ellipsoidal coordinates. , 

The Ivantsov solution suggests that  the  product of tip radius and growth velocity is fixed 

for a specified undercooling. Unfortunately, pV = const represents an infinite number of 

possible steady states whereas nature selects a unique p - V pair from this continuum of 

possible solutions. Many studies since the  original Ivantsov work have appeared which 

attempt to lift this degeneracy. Fisher (see Chalmers [3]) argued that the temperature 

field near the dendrite tip should be  approximately that surrounding a growing' sphere. 

By equating the radial growth rate of a sphere with the propagation velocity  of  the 

dendrite a modified p - V relationship was found which  then contained the length scale 

i 

missing from the Ivantsov  problem,  namely  the capillary length.  In 1967, Sekerka et al 

(see Langer [4] incorporated capillarity into the solution by assuming simply that the 

curvature was everywhere equal to 2/p. Temkin [SI retained the Ivantsov general 

solution, but applied  the conservation of heat  boundary condition only at the tip of  the 

needle crystal. All three of the above  modifications predicted a maximum in the V vs p 

relation and, at the time, it was conjectured that the operating point of the  growing 

dendrite corresponds to the point of maximum  velocity. Unfortunately, a  rigorous 

justification for the maximum  velocity  hypothesis  was  never found. Furthermore, 

experimental results by  Glicksman et al [6] on the transparent organic material 

succinonitrile clearly demonstrated that dendrite growth is not governed by  a  maximum 

velocity constraint. The authors measured  independently the tip radius and velocity for 

various undercoolings and  showed that the experimental operating point, although lying 

very close to the Invantsov relationship, was  nearly  an order of magnitude removed from 

the maximum velocity point predicted  by the closest modified theory (Temkin). 

In a series of  papers Langer and Muller-Krumbhaar [7-91 examined the morphological 

stability of  a dendrite for the case of vanishing capillarity and identified a instability in 

which the tip of the dendrite splits in  two. In addition, it was  shown that as the capillary 
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length increases, at some  point,  the  tip splitting behavior disappears, although  amplified 

noise in the form of sidebranches still exist. The  authors  argued that if the operating 

point is in fact determined  by  stability  then the criterion  must  reduce to the simple form: 

2.8 

and they further speculated  that o * corresponds to the  point of marginal stability, ie. the 

point where the dendrite is just stable with  respect to the splitting mode. Like the 

maximum-velocity idea,  no  formal  proof  of  the  marginal stability criterion has been 

attempted and although  the  criterion  has since been  abandoned  in favor of microscopic 

solvability theory, the  parameter o * remains a useful one in the study of dendrite growth. 

Experiments conducted  on  several  systems - such  as ice [ 10-141 and succinonitrile [6, 151 

- at many different undercoolings,  and  hence  various p -V combinations, all 

demonstrated that the operating  point o * is  in fact a constant. A constant o * when 

combined with the Invantsov  solution  provides a rough qualitative description of dendrite 

morphology. At large undercoolings  dendrites are sharp and fast moving  whereas  at  low 

values of A dendrites are fat and  slow  moving. The key remaining question then 

became: what determines  the  value of o * for any  given system? 

2.1.3 Microscopic  Solvability 

In 1974, ' Nash and  Glicksman [ 161 employed a boundary element formalism to 

numerically determine the shape and  velocity  relationship for a free dendrite. In two 

dimensions, the integral  formulation  needed to describe the dendrite shape z(x) is given 

by: 

A - d,, ( i i )  K = - jdx'erp[ {x- x y  + [z(x) - z(x?p 1 
27zi 1 '* 1 2.9 
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Where K is the curvature at any point on  the  interface, KO is the modified  Bessel function 

' of order zero and I is the thermal diffusion  length given by I = 20, /V . In the absence 

of capillarity ( d o  (2) = 0)  the above expression reduces to the Ivantsov solution. Nash 

and Glicksman solved the 3D version of eq. 2.9 for the case of  an isotropic interface 

energy (d,, = const ) and invoked the condition  that the dendrite shape remains smooth at 

its tip, ie. dz / dx = 0 at x = 0. The authors  then computed the shape velocity relationship 

with capillarity included to test the veracity of the maximum velocity  selection  rule. 

The condition of  a smooth dendrite tip turns out to be a  key ingredient in establishing a 

velocity selection criterion. Subsequent to the  Nash  and  Glicksman  work  a  number of 

studies examined approximate  models of the full time dependent dendrite growth 

problem. Local models [17-201 and boundary layer models [21,22] are numerically quite 

tractable yet manage to capture many of the essential features of dendrite formation. 

Results from these models indicated that  for  a non-zero value of the capillary length there 

no longer exists a complete spectrum of solution, only a discrete set of velocities  yield 

solutions which are stable. Meiron [23] and independently Kessler [24] then  examined 

the behavior of solutions to the full 2D growth problem, but did not force the dendrite tip 

to remain smooth when solving eq. 2.9. For  all cases of non-zero interfacial energy, it 

was discovered that no solutions could  be  found which yielded  a  smooth tip. The only 

means  of generating an acceptable dendrite shape was to incorporate anisotropy  of  the 

solid-liquid interfacial free energy through the orientation dependence of do (2). 

Addition of a small anisotropy leads to a  discrete family of solutions and, as was later 

shown [25], the only stable solution from this set is the one corresponding to the highest 

velocity. A compelling selection criterion,  known as microscopic solvability, is 'then 

complete. The operating point of the dendrite is dictated by  allowed solutions to the 

numerical problem and necessarily includes  some degree of crystalline anisotropy. 

Although microscopic solvability appears to have solved a long standing problem  in  the 

study of solidification, its experimental verification remains a formidable challenge. 

Since anisotropy in the interfacial free energy can not be neglected,  no  matter  how small, 

14 



free energies in the 

experimental measures of the o * parameter  must  be  accompanied by accurate 

measurements of the anisotropy in  order to successfully validate  theory. A convenient 

measure of the anisotropy is the parameter E ,  which represents the relative interfacial 

100 and 1 10 orientations  or: 

3100 - 3110 
Yl00 + YllO 2.10 

E,  = 

(the subscript 4 refers to the four fold symmetry of the underlying crystal lattice.) 

Given the difficulty of performing  measurements of y in  general  and the anisotropy in 

particular, it is perhaps  not surprising that anisotropies in the  solid-liquid  boundary 

energy have been  measured  in just six  systems. In all cases the  anisotropy  was found to 

be on the order of E ,  = 1 %  . By  measuring the equilibrium shapes of liquid inclusions 

embedded in the crystalline solid, Glicksman  and  co-workers [26,27] obtained the 

anisotropy in  both succinonitrile and  pivalic acid. Mucschol et al. [28] studied the same 

two systems by  measuring shapes of crystal  particles  surrounded  by  the liquid phase. 

The results for pivalic acid illustrate the difficulty  in  measuring  the  very small anisotropy 

as the two separate experiments yielded anisotropies which differ by a factor of  two. 

Using the crystal in liquid method, Dougherty  and Gollub [29] determined the anisotropy 

in  NH&r and Oswald [30] studied the  system hectaoctyloxytriphenylene. In a study of 

dendrite growth in ice crystals, Koo et al. [31] measured the anisotropy of the solid-liquid 

interfacial free energy in  both the six  fold symmetric basal  plane  and  the  two fold 

symmetric edge plane.  Very  recently  Napolitano  and  Trivedi [32] were able to isolate 

liquid inclusions within  the solid in AI-Cu alloys. By measuring the shapes of the liquid 

regions after quenching these authors  provided  the first anisotropy result for metal 

systems. The lack of sufficient experimental  information concerning the anisotropy 

remains a significant hurdle to the application of continuum modeling of real systems, but 

as will be  shown  in section 3.1, atomistic  simulation  methods  can  often  provide the 

necessary anisotropy factors. 

To  date there are just two complete experimental tests of solvability  theory. The 

agreement between  theory and measured  dendrite growth velocities and morphologies is 

adequate for the case of succinonitrile, whereas experiments on  pivalic  acid [33-351 show 
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substantial disagreement with  the  predictions of microscopic solvability. Due to the 

overall lack of experimental data,  closure  between  theory  and experiment remains 

incomplete. 

An important point concerning crystalline  anisotropy  needs to be  addressed  at this 

juncture. Much of the early work  on  the  formulation  of the microscopic solvability idea 

neglected effects resulting from kinetic  undercooling. As indicated  by the last term in eq. 

2.3, the kinetic effect is also dictated  by crystalline anisotropy  through the p term. Since 

the anisotropy of y plays such  a  central  role  in the dendrite shape and velocity, it is 

reasonable to assume that  anisotropies  in p should also be  important. Furthermore, there 

is  now mounting evidence that the  anisotropy  in p is about  an order of magnitude larger 

than  that of y (see below).  It is quite possible  that the absence of anisotropy in the kinetic 

coefficient in the solvability predictions  could explain the large discrepancy between 

theory and experiment for the case of pivalic  acid. Evidence to support the notion that the 

anisotropy in p may  be the source of  the error for PVA stems from experimental 

observations which show o * is  in fact dependent  on undercooling. 

2.2 The Phase Field Model 

2.2.1 Basic Equations 

There exist two derivations of the  basic  equations of the phase field model. The original, 

due to Langer [36], is based  on  a  variational  form. The starting point is a 

phenomenological description of the free energy of the system given  by the following 

functional: 

16 

2.1 1 
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The quantity 4 is ,the phase field, it  characterizes the state of system  at  any point and 

varies continuously from  a  value  of  +1  in  the solid phase to -1 in  the liquid. (Several 

formulations define the  limits of 4 = 0 for the liquid and 4 = 1 in  the solid.) For  a 

uniform system, that is with @ a  constant  throughout, the free energy per unit volume is 

given  by f (4). Traditionally, f@) assumes  the form of  a double well potential of the 

form: 

2.12 

Since the above expression  possesses  minima  at  +1  and -1, this free energy contribution 

alone would predict an  equilibrium  morphology consisting of solid and liquid regions 

separated by infinitely sharp  interfaces.  However,  an energy cost for creating gradients 

in 4 is embodied in  the first term  in  the  integral expression of eq.  2.11. The competition 

between the gradient term  and thef function  is  a 4 which  varies continuously, although 

rapidly, across a diffuse solid-liquid  boundary  where W is a  measure  of the interface 

thickness. The final term in eq. 2.1 1 represents the coupling between the phase field and 

the temperature where  the  two  parameters b and h will  be  defined below. The g 

contribution, an  odd function of 4 , has  the  effect  of lowering the minimum at 4 = +1 

relative that at 4 = -1 for instances  where u c 0 , thereby driving the solidification 

process. 

The free energy functional of eq. 2.1 1 is similar in spirit to other  models  which have been 

traditionally been  utilized to describe  phase transitions [37-391. In fact, Langer’s original 

development of the phase field method  was  based  on  a  reformulation  of the model C of 

Halperin, Hohenberg and Ma [40]  describing critical phenomena into a  model of 

solidification of a  pure  melt.  Other  early  work  on the phase field technique includes a 

numerical implementation by  Fix  [41]  and  an  independent derivation by Collins and 

Levine [42]. Furthermore,  the  thermodynamic consistency of the variational form was 

verified by Penrose and Fife [43] and  Wang  et al. [44]who  rederived the relevant 

equations and constraints starting from an  entropy functional. 



Kinetics of the phase field model  require  rate equations for the two relevant fields in the 

problem. The phase field, a  non-conserved order parameter, is assumed to evolve 

according to the time dependent Ginzburg-Landau  form: 

a4 d~ 
at 64 

z(n)- = -- 
2.13 

where T is  a relaxation time. The required  diffusion equation describing the temperature 

field can be generated as follows. Let U be  a dimensionless enthalpy given  by 

u =u-h(@) 2.14 

U has  been normalized by the latent  heat  such  that  when  the system transforms from a 

complete solid phase to the liquid at u = 0 the change in U is  unity. Therefore, latent 

heat generation places a constraint on the function h given  by: 

h(+l) - h(-1) 
=1 

2 2.15 

By performing the functional differentiation  indicated in eq.  2.13 and using the definition 

of eq.  2.14, the following diffusion equation is obtained: 

However, the above expression  is  valid  provided 

b 
g(@) = p ( @ )  

2.16 

2.17 

This constraint fixes the value of b, it is a  constant chosen such  that the limiting behavior 

of h (eq. 2.15) is obeyed. The simplest  consistent set of functions is g(4) = 4 , h(4) = 4 
and b= 1. 

A second derivation of the phase field equations is known as the isothermal variational 

form. The key feature of the isothermal  version is the absence of the constraint of eq. 

2.17 or, in other words, the functions g and h can  be chosen independently. A functional 

form for g used in  many phase fields studies is 

g(4)=@-2@3/3+(b5/5 2.18 
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which has the distinct advantage of maintaining the minima of the free energy at the 

positions 4 = +1 independent of the  value of u. For the function h the simple form 

h(#) = # has been  shown to be  very efficient from a computational standpoint. Although 

the isothermal variational form lacks  the  rigorous  thermodynamic justification of the 

variational form, both  versions  yield  identical results in the limit of a  thin interface 

region. Hence the  isothermal  variation  description is preferred  in cases where 

computational requirements are severe. 

The widely recognized appeal of the  phase field method is the elimination of the explicit 

tracking of moving interfaces and  the  above  development demonstrates how this 

important feature is  achieved. Partial differential equations 2.13 and 2.16 can now  be 

soIved on a fixed finite difference grid  and the growth  of  the solid region  is  reflected  in 

the evolution of 4 . In practice, the position of the solid-liquid boundary  is found by 

computing the contour 4 = 0 .  Numerical implementation of the phase field equations 

typically involves an explicitly scheme  with  a time step chosen to insure numerical 

stability. Spatial derivatives are  computed  using standard central difference schemes. 

However, care must  be  taken when evaluating the Laplacian operator because the 

standard first order expression  can introduce anisotropies due to the  grid itself. 

Therefore, a second order expression  which effectively removes the spurious anisotropy 

has  been utilized [45]. 

Anisotropy in the solid-liquid interfacial free energy  and  the kinetic coefficient can  be 

written as [46]: 

~ ( f i ) / y ~ ,  =ua,(ri)= (1-3g4 

2.19 

Where E: is the anisotropy, analogous  to E , ,  of  the kinetic coefficient and n, , ny and 

n, are the components of the  normal  vector. Equations 2.19 represent  a first order 

expansion about the isotropic values 3.” and  such that the four fold lattice symmetry 
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is maintained. The coefficients of the  expansion  are  written  in  a  form  which  maintains 

the definition of E ,  in  eq.  2.10. The crystalline  anisotropy  is  incorporated into the  phase 

field method  through the parameters W and z . They are given  by W ( i )  = W,,a,(i) and 

z (E) = z,a, (;)a, (E) and the values of the  prefactors  will  be  derived in the next section. 

Finally, since there are no  longer  sharp  interfaces in the phase field picture, one  needs to 

be careful when defining the normal  vector.  The  working  definition  is: 

And  hence the final term in  eqs.  2.19  is  given by: 

n, 4 +n, 4 +n, 4 = (a41ax)4 + (a4/ay)4 +(a4 /aZ)4  

1 ~ 4 1 ~  

2.20 

2.2 1 

One of the more striking features of dendries  is  the  emission of sidebranches  starting at 

distances equal to few tip radii  behind  the  advancing  primary  branch. It is  now  well 

accepted  that sidebranches result  from  the  amplification of noise initially  located at the 

dendrite tip [47-511.  Noise  in  phase  field  simulations  can be introduced in a qualitative 

fashion by randomly driving the tip [52,53]  and  in  fact  numerical  noise  in the simulation 

can provide a source of sidebranching  activity. A more quantitative means of study 

sidebranching formation  was  introduced by Karma  and  Rappel  [54]  who  added  a 

Langevin noise term to both the phase  field  kinetic  equation  (2.13)  and the diffusion 

equation for the temperature field  (2.16).  The  noise  was  assumed to be  uncorrelated in 

space and time and the specific  form of the  terms  were  chosen  such that equilibrium 

fluctuations of the  temperature  and  the  shape of the  solid-liquid  interface  reproduced the 

forms predicted from statistical mechanics  considerations  (a  discussion of the proper 

form of the interface fluctuations is given  in  sect.  3.1). The authors  demonstrated  that 

both noise sources can be specified by a  single  dimensionless  parameter  given  by 

F e x  = kBTM /Gd: >. 
i 

To conclude this section we  note  that the phase field method  has  been  extended far 

beyond studies of solidification. Similar  forms of the free energy functional in eq. 2.1 1 
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and the kinetic laws of eqs. 2.13 have  been  utilized to simulate a  host of diverse materials 

science problems including, particle  coarsening [55-571, grain  growth [58-611, 

eutectic/eutectoid transformations [62,63], dislocation  dynamics [64], faceting of solid 

surfaces [65], fracture [66] and  domain  structures  in ferroelectrics [67]. 

2.2.2 The Thin Interface Limit 

At this point three quantities in  the  phase field model  remain as unknowns, W, R and z . 
Since the phase field technique  is  a  numerically  efficient  means of studying the 

underlying sharp boundary  problem  defined  in  eqs. 2.4, it is reasonable to demand that 

the phase field equations reduce to the  sharp  boundary case in the limit of vanishing 

interface thickness. As  shown by Langer [36] and  subsequently Caginalp [68] this limit 

provides the link between the quantities W, 2 and z and  actual  materials parameters d,, 

and ,6 . In particular, it can be shown: 

W 
do = U ,  - a 

z 
P = U , -  

AW 
2.22 

Where a, is a constant of order unity  which depends on the specific functional forms 

chosen for g ( @ ) .  The limiting  behavior  including the effects of crystalline anisotropy 

have been investigated by Kobayashi [69] and  McFadden et al. [70]. Notice that the 

limiting forms in eq. 2.22 do not  uniquely  specify all three  unknowns,  but  only the ratios 

W / A and z / AW . In practice,  convergence of a phase field calculation is checked  by 

decreasing W and A while  maintaining  a  constant do , decreasing z at constant ,6 and 

verifying that the results are  independent of the interface thickness. 

Kobayashi [71] was  the first to  generate  realistic dendrite structures using large scale 

phase field simulations at high  undercooling.  However,  work  by Wheeler et al [52] and 

Wang and Sekerka [72] addressed  the  question of convergence and  uncovered  a serious 

limitation to the phase field model as the  undercooling is decreased. The problem is one 
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of length scales, of  which there are three in  the dendrite problem. The smallest length 

scale is the capillary length.  For  typical  pure materials do is  on  the order of nm. The 

second, larger scale is the microscopic scale which is on the  order of the tip radius of 

curvature. The third and  largest scale is the  thermal diffusion length  which is given  by 

D, /V . At  high undercoolings the  velocity of the dendrite is high, meaning the diffusion 

length is relatively small. Furthermore,  at  high A the dendrite tips are quite sharp which 

implies the microscopic scale is also small. Therefore, it is possible to generate a finite 

difference grid of  mesh size -W which  can capture all three length scales. At small 

undercooling, a regime  in  which  dendrites are slow moving and exhibit large tip radii,  the 

largest and smallest length scales can  differ by several orders of magnitude. The length 

scale problem limited initial phase field simulations  of solidification to the regime A - 1. 

Part of the length scale dilemma can  be  overcome  by reexamining the way  in  which the 

limit was  taken  in deriving eqs. 2.22. However, it is instructive to first investigate the 

constraints imposed  by assuming a vanishing interface thickness. Notice that the 

variation  in u across the diffuse interface  varies as the interface thickness divided by the 

diffusion length, or du - WV / D, . In the  vanishing thickness limit, the variation is zero 

or equivalently u approaches a constant. A variation in u such that du << u, implies 

from boundary condition 4 W V /  D cc PV . From eqs. 2.22, this constraint can  be 

rewritten  as: 

W Dz 
do W 2  2.23 

The term on the RHS of the above  inequality  must  be less than  unity to insure numerical 

stability  in  an explicit numerical scheme and therefore W must  be less than the capillary 

length. Consider now the total number of floating point operations, N ,  , needed to 

-<<- 

simulate dendrite growth. N ,  is the product of two terms: the first is the total number of 

grid points, a total which  must  capture the large thermal diffusion scale or 

(Dl* / W V ) d  where d is the dimensionality (2 or 3) of the calculation. The second is the 
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time  needed to reach  steady state which  varies as D, IV 2z. By recalling the definition 

of o * and the Peclet  number, p ,  one  can  write the final expression  as: 

2.24 

The first term in  brackets  in  the  above  expression also appears  in eq. 2.23  and the second 

term reflects the microscopic length scale. It is the  third  term  which  clearly illustrates the 

very drastic effects resulting from the  vanishing interface limit constraint of eq.  2.23. 

Any method capable of increasing the W in  a phase field simulation would dramatically 

improve efficiency especially in three dimensions. One such method is the thin interface 

limit. 

Rather  than study the behavior of the phase field equations in the limit of the thickness 

approaching zero, Karma  and  Rappel  [46,73]  argued that the important requirement  is the 

interface  width  being  much smaller than the  thermal  diffusion  length  and  not  that  the 

thickness  vanish  completely. A necessary consequence of this approach is a  temperature 

variation within the diffuse boundary  region  and the authors  obtained the temperature 

field  by employing a  boundary  layer  technique. The derivation of the thin interface limit 

is quite lengthy and the reader is referred to ref.  [46] for details. Nevertheless the main 

results  can be stated as follows. In the  thin interface limit, the first of eqs. 2.22  is 

unchanged, but the condition on the F term  becomes: 

2.25 

Where a2 is an additional positive constant of order unity. The second term in  brackets 

is a direct result of  the  temperature  variation  and is the key to the improved efficiency. It 

is now possible to choose a larger value of W, or equivalently h, than  suggested  by eq. 

2.22 and still maintain  the same value of F . Karma  and  Rappel  used  the  thin interface 

results to simulate, for the first time, dendrite  growth  in  two dimensions for a  value of A 

as  low as .25 and  in  three dimensions for A = .45. A second advantage of the thin 

interface limit is the fact that by  choosing il = zD, lW 2u2 the kinetic term vanishes 
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completely. Negligible interface kinetics is physically  relevant for many materials at low 

undercooling. 

2.2.3 Adaptive  Mesh Refinement  Schemes 

In solving the basic phase field equations we have thus far examined schemes which 

maintain a uniform finite difference grid.  However,  in finite element solutions of 

problems in heat transfer or solid mechanics  a  nonuniform  mesh is routinely  used. In 

regions where the temperature or.stress is varying rapidly a fine mesh  is generated and  in 

those regions where the field variable varies  slowly  a coarse grid is established. Based on 

the success of finite element methods  one  may  ask:  can such a nonuniform mesh 

approach be utilized in the dendrite problem to overcome the disparate length scales 

inherent in the problem? As evidence by  the  work  of  Provatas et al. [74,75], adaptive 

mesh refinement schemes have been  successful  in treating the solidification problem. 

A crucial difference between static finite element  problems  and the solidification case is, 

once again, the moving solid-liquid boundary.  Although it is possible to construct a  new 

mesh every few time steps such that the fine mesh elements are located'in the ,vicinity of 

the diffuse boundary, such mesh  regeneration  schemes are far too inefficient. A preferred 

method is to refine, or unrefine, existing elements as the boundary  moves. A successful 

numerical scheme would  then involve two  tasks:  a technique for splitting up an  element 

into smaller elements and  a  method to identify those elements which  need to be refined. 

To understand how a refinement scheme  might work, consider the case of  a  uniform 

square array of elements in  a two dimensional simulation. If a  given element has  been 

targeted for refinement, one could simply  split  the square into four smaller squares. This 

approach however, produces four additional edge nodes  on the four neighboring 

elements. It is a nontrivial exercise to satisfy  the field equation at these extra edge nodes 

and Palle and Dantzig [76] solved the node  problem  by creating additional triangular 

elements in all the neighboring squares. Thus,  at  any  given  time step the mesh consists of 
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triangular and square elements and  the size of the  elements  near the solid-liquid boundary 

are much smaller than the elements in  the far field. In fact, in the work  of Provatas, et  al., 

the  mesh refinement is so severe that  the  difference  in size of the smallest and largest 

element is a factor of 217. The adaptive  mesh  scheme also allows for the reverse process 

of unrefinement, whereby  smaller  elements are removed as the solid-liquid interface 

sweeps through a given  region.  Although  adaptive  mesh refinement is capable  of 

bridging the length scales in the solidification  problem, it is  not clear the technique can be 

extended in  an efficient manner to three  dimensions. 

In finite element methods the gradient field, for example the  heat flux, is evaluated only 

within an element and  gradients  need  not  be  continuous  between  elements.  However, a 

smoothed gradient field can be  generated by projecting  the element gradients to the node 

points. Palle and Dantzig, based  on an earlier study by  Zienkiewicz  and  Zhu [77], used 

the difference between the smoothed  heat flux and  the  heat flux calculated by  the finite 

element technique as a metric for mesh  refinement. If the normalized error between the 

smoothed and calculated fields for a given  element  is larger than a certain tolerance level, 

then the element is refined as described  above.  One  can  easily see why the error 

estimation is quite effective in  locating  and  refining elements close to the solid-liquid 

boundary. It is in these regions  that  the  heat flux is varying rapidly. In fact, the sharp 

interface model predicts a discontinuity  in  the  heat  flux  at the interface (see eq. 4). 

Provatas ,et al.  were able to successfully  model  dendrite  growth  in  two dimensions for 

dimensionless undercoolings as low  as A = .l . Interestingly, for small undercooling, the 

authors noted a very long transient  regime  where a significant deviation  between the 

computed tip velocities and  those  predicted by solvability theory was found. ’ The 

discrepancy can be understood as follows. In the  two  dimensional simulation, crystal 

symmetry dictates that four dendrite tips form-and grow  in four orthogonal  directions. As 

noted above, the thermal length increases as A decreases  and  if the undercooling is 

sufficiently small the  thermal fields of  the four dendrite tips begin to overlap. The 

transient regime then  is  the time needed  for  one  dendrite to “outrun” the thermal fields of 

the others, a time  which increases rapidly  with decreasing undercooling. As microscopic 
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solvability theory is valid for an  isolated  dendrite,  the  work  of Provatas et al. does not 

point to a failure of  theory,  but does offer a  cautionary tale for simulations which seek to 

investigate the small undercooling  limit. t 

2.2.4 The Random Walker Technique 

Adaptive mesh  refinement  resolves  all  length scales in the problem  using  a consistent 

numerical  procedure.  Another possibility is to separate the entire computational space 

into just  two regions of small and large length  scales. The thin interface limit analysis 

offers an effective means to help  bridge the gap  between the small capillary length and 

the larger microscopic length in the  dendrite solidification problem. There remains 

however the large difference between the thermal diffusion length and the length scale 

associated with the tip radius.  At  very  low undercooling these scales can differ by many 

orders of magnitude. In any phase field simulation the function 4 varies rapidly only 

near the diffuse boundary  and is a  constant (kl) far from the interface. In these distant 

regions the only  relevant field is the  temperature  and the diffusion equation given in eq. 

2.1 is valid. Thus, a possible approach for bridging length scales would  be  a scheme 

which couples an efficient means of solving  the slowly varying temperature field  in  a 

region far from the boundary  with  a  phase  field approach for the inner region. Such an 

idea has  been carried out  by Plapp and  Karma [78,79]. 

The inner, smaller length scale, domain in the Plapp-Karma scheme contains the solid- 

liquid interface and is solved using the  phase field model on a fine finite difference mesh 

as described above. The outer domain is solved  by the method of random walkers. 

Walkers are discrete points  in space and  each can be viewed as containing a certain 

amount  of  heat. As solidification  proceeds  the positions of all the walkers change and to 

update an individual walker  a  new  position  is randomly selected with  a probability 

distribution given  by: 

i 
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P 

1 
P(r’, t’ I r, r )  = 1r’-rl2 ] 

[4m, (t’- t ) y 2  40, (t’ - t ) 2.26 

Here rand r’ are the old and new  positions of the walker respectively and t’- t is the 

time increment between  updates.  The  greatly  improved efficiency of the  random  walker 

approach stems from the fact that  walkers far from the interface are updated less 

frequently and are allowed to move  further  than  the  walkers close to the inner domain. In 

a sense, the random walker  algorithm  acts as a variable mesh size finite element approach 

without the need to continually  update  a  mesh. 

To merge the two computational  domains  Plapp and Karma specify how  walkers are 

created and destroyed in the transition  region.  Net changes in the number of walkers are 

handled  by  a coarse grid of “conversion cells” located at the transition between the outer 

and inner domains. The grid  of  conversion cells can  be superimposed on the finer phase 

field grid. The temperature of  a  conversion  cell is related to the density of walkers  in the 

cell  by: 

u,, = -A(l - mi ( t )  l M )  2.27 

Where mi is the  density  of  walkers  in  cell i and M is a constant integer. Definition 2.27 

dictates that  an empty cell corresponds to the  initial state ( u  = -A) and  a conversion cell 

with M walkers is equivalent to u = 0. The temperature  in  the conversion cells satisfies 

one boundary condition between  the  inner  and  outer domains, another condition which 

must  be  met is a balance of heat  flow.  Let Qi(t) be  a reservoir variable describing the 

heat content of conversion cell i. At  each  time step in the simulation the phase field inner 

solution yields the amount of heat  that flows into or out of the  conversion cells and this 

amount  can  be added to Qi . Then if  the  updated  value  of Qi is greater than some critical 

value Q, a walker is added to conversion cell i and Q, is subtracted from the reservoir. 

On the other hand if Q falls below - Q, a  walker  is removed and Q, is added to the cell 

reservoir. The above algorithm ensures  that  the addition and subtraction of walkers 

occurs  at  a rate proportional to the local  heat  flow  and thus heat  is conserved. 
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The hybrid phase field - random  walker  scheme  appears to be the most efficient means  of 

computing dendritric solidification  at this time. Despite the fact that a large number of 

walkers were employed ( 5 ~ 1 0 ~ )  in  the  calculation, the authors found that the far field 

temperature profile could  be  computed  with  virtually  no extra cost. That is, most  of the 

computer time was  devoted to solving the  inner  region. Plapp and Karma were able to 

simulate dendrite growth  in three dimensions for a very  low undercooling of A = .05. An 

interesting result of the study was the observation that CJ * reaches a constant value  very 

soon after the dendrite arms have formed. The individual contributions, p and V, evolve 

much more slowly consistent with the findings of Provatas et al. 

2.2.5 Binary Alloys 

As  in the pure material case, the logical starting point for a discussion of dendrite 

formation in alloys is the sharp interface limit. Langer [4] has emphasized that there 

exists an exact analogy  between the set of eqs. 4 and the governing equations of alloy 

solidification. If p represents the deviation of the chemical potential of solute atoms  in 

solution from the equilibrium value  at  some specified temperature,  then the diffusion 

equation of  eq. 1 becomes 

aplat = D , V ~ ~ ;  spat = D , v ~ ~  2.28 

where diffusion in  both the solid and liquid phases  has  been included and DL and D, 

are the corresponding chemical diffusion coefficients. Notice only the chemical field is 

relevant here. Since the diffusion of heat is much faster than the rearrangement of solute 

atoms (D, >> DL ), it is justified to assume an isothermal system  at some specified 

temperature. Similarly, in simulations of forced velocity solidification within a 

temperature gradient it is valid to invoke the frozen temperature approximation, meaning 

the temperature gradient remains fixed at all times. The equivalent of the latent  heat 

boundary condition becomes 

V,AC = ; . ~ , v C l ,  -M,v~I ,  J 2.29 

28 



where M are mobilities and Ac is the difference between  the equilibrium concentration in 

the liquid phase and  that of the  solid  phase  at the temperature of interest, or equivalently, 

Ac is the length of the equilibrium tie line in  the solid-liquid two phase region  of the 

alloy phase diagram. The above  condition relates the  velocity to the rejection of solute at 

the solidification front in an analogous fashion to the  rejection  of latent heat in a pure 

melt. The rejection of solute  at  dendrite tips eventually  leads to a nonuniform solute 

distribution in the  final  microstructure of cast alloys. The final  boundary condition is 

then: 

p ,  =-d,(I/R,  +l/R,)-PV 2.30 

where d, is now the chemical, rather  than thermal, capillary  length (to be defined below) 

and  again PV is the kinetic  undercooling. Finally, the equivalent of the dimensionless 

undercooling from the pure case, is the dimensionless supersaturation  which  can  be 

written  as: 

a= cy - c ,  - cy - c ,  - 
c;(I-/t) AC 2.3 1 

Here k is the equilibrium segregation coefficient defined  by k = c,  I C ,  where c, ( c l )  is 

the solid (liquid) concentration at the interface and cy is  the equilibrium concentration in 

the liquid. The initial concentration of the system is  denoted by c _  . 

Unlike the pure melt case, in  alloys it is no longer appropriate to assume equal 

diffusivities in  the solid and liquid phases. For typical alloys, the ratio of chemical 

diffusivities DS / D, is on  the order of lo4 at the melting  point  and hence the symmetric 

model of solidification is entirely  unacceptable.  However, the general non-symmetric 

model presents special problems  when applying a phase  field  method  of solution. Since 

4 varies continuously across a solid-liquid interface, one  must also specify a 4 

dependent diffusivity which  yields D = D, in the limit 4 = 1 and D = DL for the liquid 

phase ( 4 = -1 ). Many forms for the dependence of D on the phase field have been 
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utilized to  date but, as will  be  discussed  below,  when applying the  thin interface limit the 

optimal choice of  the functional form is by no means trivial. A second  problem  in the 

phase field adaptation to the alloy case is  the use of chemical potential fields. The i 

analogy between the alloy  and  the pure material case is instructive, however  in practice it 

is often more desirable to solve for the  experimentally  accessible concentration field 

rather than the chemical potential. The conversion from chemical  potential to 

concentration depends on the free energy functional chosen in the phase field formulation 

and, in general, results in  a  nonlinear  diffusion  equation  even  in  the far field limit. 

8 

Pioneering theoretical work  on  the  phase  field formulation of alloy solidification was 

provided by Wheeler, Boettinger and  MacFadden [80,81] and Calginalp and Xie  [82]. 

Warren and Boettinger [53]  generated  realistic dendrite morphologies  in two dimensions, 

complete with sidebranching behavior  and  microsegregation, for a  phase field simulation 

using parameters appropriate to the  Cu-Ni  system. The authors employed a  regular 

solution model to describe the themodynamics  and  investigated dendrite morphologies 

for two ratios of diffusivities, D, /DL = 1.~10" and 1x10-'. Warren and Boettinger 

found good agreement with the sharp  interface, Ivantsov prediction  provided  the finite 

difference grid spacing was sufficiently small. The Cu-Ni  phase field model  was later 

modified [83] to examine growth  morphologies and solute redistribution during 

recalesence. The phase field model  was  modified such that  a constant rate of heat 

removal could by applied to the entire system. Finally, Boettinger and Warren  [84] 

investigated the case of forced velocity  solidification starting from an initially flat solid- 

liquid boundary. Results were  compared  to the Mullins-Sekerka  [85] instability 

prediction and solute trapping as a  function of interface velocity  was compared to the 

model  of Aziz [ 861. 

To date, phase field simulations of binary  alloy solidification have  been plagued with the 8 

same constraint as in the early work  on  modeling  of pure melt solidification. That is, 

they have been limited to the high  supersaturation range. For example, the Warren  and 

Boettinger Cu-Ni study was  performed  at Q =.85. In addition, for numerical efficiency 

considerations the value of the kinetic  coefficient chosen was  about  a factor of 100 too 
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small. Based on the preceding discussion,  the  obvious starting point in extending the 

range of supersaturation is the thin  interface limit idea.  However, for the  non-symmetric 

model the limit produces serious difficulties. In the pure melt case, the phase field model 

predicts a smooth variation of the temperature  across  the  solid-liquid  boundary and, for 

equal diffusivities in  both phases, the flux of heat is proportional to the gradient in the 

temperature variation. In this symmetric case it is  possible  to  satisfy  both the continuity 

of temperature and  the latent heat  boundary  condition  (eq 4) in the limit  of a thin 

interface. In the binary  alloy case, the flux of solute is  no  longer proportional to  just the 

gradient in concentration across  the  boundary,  but  is the product of the gradient and a 

diffusivity, a diffusivity which is itself  varying  rapidly  in  the diffuse interface region. For 

a general choice of the D($)  it is no  longer possible to satisfy all of the sharp boundary 

equations when  reducing to the  thin  interface  limit  and  specifically a jump in chemical 

potential across the interface is obtained. In an important  paper,  Almgren [87] has shown 

that two additional complications arise  in the thin  interface  analysis:  an interfacing 

stretching correction and a surface diffusion  artifact  appear  in  the latent heat  boundary 

condition. 

Karma [SS] has demonstrated how  it is possible to choose functions of the phase field 

model such that the sharp interface equations of the  non-symmetric  model are reproduced 

in the thin limit. To understand  the  analysis it is  convenient to examine the simple case 

of a dilute binary alloy. In the dilute limit  where  ideal  solution  thermodynamics is 

appropriate, the following set of sharp interface equations can  be  derived: 

C[ (1 - k)V" = 4,; * vcl, 

C[ lcl' =l-(1-k)dc(l/R1 + l / R , )  
2.32 

Notice, in the above set of equations the solid diffusivity  has  been set to zero and no 

diffusion equation or solute flux through  the  solid is considered. The case D, = 0 is 

often referred to as the one sided model. Also, in the dilute limit the chemical capillary 

length is given by: 
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7% do = 
h ( 1 -  k)cp 

where rn is the slope of the liquidus line on  the equilibrium phase diagram. 

2.33 

Cast into a phase field formulation, the  sharp interface relations for a dilute alloy can be 

written as follows. The evolution of the  phase field obeys: 

z-=w2v2q+- 34 f(q+)--g’(#)(eP A - 1 )  
at 1-k 2.34 

where the primes denote differentiation  with respect to the argument. Equation 2.34 is 

similar to the phase field description of pure  melt solidification, the important difference 

being the exponential dependence of the chemical potential term rather than  a linear 

dependence with temperature (eq. 2.1 1). In this case the conversion of the chemical 

potential field to the concentration reads: 
- - 

2cl cf ,ii = In 
1 + k - (1 -.k)h(q+) 2;35 

The diffusion equation is the usual  continuity  equation: 

2.36 

Combined with  an expression for the flux given  by: 

j = -Dcq(#)Vji - aWcp (1 - 

Two .contributions to the flux are unique to the  problem  at  hand. 

2.37 

First, the function q(4) 

is the as  yet to be determined dependence of the diffusion coefficient on the phase field. 

All  that is known at this point is the  function  must  vanish for the solid (=1) and reproduce 

the liquid diffusivity for (=-1). The second important contribution is the last term of eq. 

2.37 which originated with the work  of  Karma.  It represents a solute current from the 

liquid to the solid along  a  direction  normal to the interface (see eq. 2.20) and is nonzero 

only in the diffuse boundary  region. The extra flux, known  as the anti-trapping current, is 

designed to counteract the presence of a jump in chemical potential arising from the thin 

interface limit of the non-symmetric  model. Furthermore, Karma showed that a proper 
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choice of the constant a in eq. 2.37. along  with  specific choices for the functions g and h 

can force all  three  unwanted  interface  corrections to vanish  simultaneously.  Again,  we 

need  not  present the details of the  asymptotic  analysis  but  can  summarize the key 

findings.  Results for W, z and R remain  identical to the symmetric  model findings of 

eqs. 2.22 and, consequently  the  kinetic  term  can be made to vanish. Also, the function h 

can  again  be  chosen as h(4) = 4 .  To eliminate the chemical  potential jump, the interface 

stretching effect and the surface  diffusion  contribution, q can  be  chosen  to  be: 

1-4, 
q(@) = 1 + k - (1 - k)h(@) 

and the constant a is fixed at a = l/(2&). 

2.38 

Since the thin  interface  limit  performs  well in pure  melt  simulations, it should come as  no 

surprise to find that  the  above  results  are also a significant improvement  in  numerical 

efficiency. To demonstrate  the  improvement, the Karma model  can  be  compared  to  the 

more standard choice of functions,  that is, no  anti-trapping  current ( a d )  and 

q(4) = (1 - 4)/ 2 .  Simulations  were  performed  using E ,  = .02 , k = .15  and  a  scaled 

supersaturation of L2 = .55 . To test  the  thin  interface limit scheme  the  concentration 

along the central axis of the dentrite was compared to the Gibbs-Thomson  prediction of 

c , ~  ( x ) / c r  = k[l- (1- k)d ,  / p] .  Karma  found  that the results of the thin  interface 

implementation agree to  within  a  few  percent of the theoretical  result for a small ratio of 

d, /W . On the other  hand, the standard  model is not  well  converged  even  with  a  larger 

do / W . Clearly, the thin interface analysis  demonstrates  that quantitative predictions of 

dendrite growth are now  possible  for  binary  alloys. 

3. Atomistic  Simulations 

8 

Numerical  implementation of the phase  field  model  has  progressed  to the point  where 

realistic dendrite morphologies  can be generated for a  wide  range  of  undercooling or 

supersaturation. The next  logical  step  in the modeling  process is the quantitative 

prediction  of  solidification  behavior in  real  materials. Utilizing the  phase field approach 
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as a predictive tool requires the  specification  of several material properties. Many 

parameters are readily available in the experimental literature - for example, the latent 

heat or the thermal diffusivity - others, however, are not. For these difficult to measure 

quantities, atomistic simulations can  provide  useful information. In this section we 

review how molecular dynamics  (MD)  methods and Monte-Carlo (MC) simulations can 

be employed to compute three necessary  input  parameters: the solid-liquid interfacial free 

energy, the kinetic coefficient and the chemical diffusivity in the liquid. 

The accuracy of materials parameters- derived from simulation depends, of course, on 

how accurately the interatomic potential  can capture the physics of bonding in the 

material. Most of the work to be  presented  below has employed  the embedded atom 

method (EAM). Developed in the mid  1980’s  [89,90],  the  EAM is a semi-empirical 

potential which includes, in a simple way,  many  body effects. EAM potentials have  been 

proven to be quite successful in  reproducing  various  thermodynamic, structural, kinetic 

and defect properties of several noble  and late transition metals [9l]. The original EAM 

potentials developed by Foiles, Baskes  and Daw (FBD) [92]  used as fitting parameters 

known properties of only the crystalline phase, however, Foiles [93,94]  subsequently 

showed that the potentials also predict quite well the structure and  thermodynamics of the 

liquid phase as well. Since the original FBD  work  a  number  of potential fitting schemes 

have appeared in the literature. Potentials discussed in this section include the Voter- 

Chen (VC) [95] scheme and the force matching procedure introduced by Ercolessi and 

co-workers [96,97]. 

3.1 The Solid-Liquid Interfacial Free Energv 

In 1950, Turnbull [98]  measured the solid-liquid interfacial free energy in  a  variety of 

pure metals by observing the maximum  undercooling  achieved  by  the liquid and 

comparing the result with predictions from classical  nucleation theory. Since that time 

many experimental measures of 7 have been conducted and  a fairly large database has 

been established (see, for example, Jones [99]). From the point of  view  of solidification 
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modeling the value of 3 is  not critical. In the aforementioned  Turnbull study, it was 

found that the solid-liquid interfacial  energy is proportional to the  latent  heat. The 

interfacial energy enters the solidification  problem  through  the  capillary  length  but  it 

always appears in the  ratio 2 / L and,  as it turns out, d ,  is  nearly a constant for all 

materials. As suggested by  the  microscopic  solvability predictions, a much  more 

important quantity is the anisotropy of 3 and  here  the  experimental data is  more scarce 

(see sect. 2.1.3). Because of the  precision  required to extract the very small anisotropy 

experiments are quite difficult to perform and, as  will be seen  below, atomistic 

simulations can provide useful  insights. 

Atomistic computations of the solid-liquid interfacial free energy originated  with the 

work  of Broughton and  Gilmer [loo] on the Lennard-Jones system. The authors 

employed lambda integration  techniques  combined  with an imposed cleaving potential. 

Use of a cleaving potential  allowed for a four step process  which: cleaved the  bulk solid 

and liquid, replaced one side of the separated solid portion  with  liquid  and  recombined 

the solid-liquid system by removing  the  applied  potential.  The reversible work for the 

entire process yields the  work  required to form a solid-liquid  interface of a given  area. 

Broughton and Gilmer computed 7 for the 100, 110 and  11 1 orientations  and  noted  that 

extreme care must be  taken  in  choosing the mathematical  form  of  the orientation 

dependent cleaving potential. In dimensionless  units,  the  interfacial energies were found 

to be 3 = .34 k .02 , 7 = .36 k .02 and 3 = .35 k .02. Due to the  uncertainty  of the 

simulation results, no  anisotropy  could be derived. Davidchack  and  Laird [I011 used a 

modified Broughton-Gilmer scheme  to calculate the  solid-liquid  interfacial free energy in 

the hard sphere system  and  they  found jlo0 = .62+.01 , = .64+.Ol and 

= .58 _+ .01 in reduced units. Although the Davidchack and Laird  result represents 

the first reliable value of 3 in  this  much  studied  model  system,  the  uncertainty is still too 

high to accurately fix the anisotropy. Density functional theory [ 102-1041  approaches 

offer a promising means of theoretically computing 7 , however,  results of various 

studies on the hard  sphere  system  show considerable discrepancy  [105]. The work  of 

Curtin [ 1061, who employed a weighted  density  approximation [ 1071, is considered to  be 
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the most accurate model as it  predicts  a  hard sphere interfacial energy close to that found 

from simulation. Curtin did find a  small  anisotropy  between the two interfaces studied, 

100 and 1 1 1, but the uncertainty of the  results are unclear considering the assumptions 

invoked. What is needed  is  a  simulation  method  which  is capable of resolving the small 

anisotropy and  such  a  method  has  been  developed  by Hoyt, Asta  and Karma [ 1081. E 

Consider a thin solid-liquid  system  with  the  direction x running along the interface and  let 

the length in x be  denoted by W. Furthermore, let the system be infinite in the direction 

perpendicular to the boundary  and let b be  the thickness of the system with b << W . If 

{ ( x )  represents the height of the interface,  then the energy of this system can be  written 

as: 

3.1 

At the melting temperature the amplitude of fluctuations in the interface position are 

small such that  the following approximations  can be used ds = 1 + (de / d x ) 2  / 2 and 

6 = dr / dx . Also, let the interface height  function be expressed as the sum of  Fourier 

modes according to: 

{ ( x )  = xA(k)exp(ikx). 
k 

3.2 

With the above assumptions  and  definitions the energy per Fourier mode E, can  be 

derived: 

E, =bW(y+y”]A(k)12k2 3.3 

where y ’ k  d 2  yld02 and  is the same  term  which appears in  eq. 2.3. The principle of 

equipartition of energy states that  the  mean energy per Fourier mode must be equal to 

k,T, (that is 2 degrees of freedom per  mode corresponding to cos(kx) and sin(kx) ). 
Therefore, the desired result can  be  written as: 

4. 

3.4 

Equation 3.4 above is  the starting point for the fluctuation spectrum method  for 

determining the solid-liquid interfacial free energy  and its anisotropy. The  sum 7 + 3. ” is 
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known as the interface stiffness  and it is important to note that it is this quantity and not 

, 3. itself  which controls the  amplitude of fluctuations. 

The result of capillary  theory, eq. 3.4, has  been  used frequently in  the past to study 

various interface properties. For example, Bartelt et al. [lo91 derived surface mass 

diffusion coefficients by monitoring fluctuations in surface steps during Monte-Carlo 

simulations, Hapke et al [ 1 101 employed  molecular  dynamics simulations to compute the 

surface tension in  polymer films and Le Floc’h et a1 [ 1 1 11 examined the roughening 

transition of  anti-phase  boundaries for the  ordered  phases L12 and D03, but  in each case 

an isotropic interfacial energy was assumed. The real power of the fluctuation spectrum 

method is its ability  the  resolve  very  small anisotropies, as can  be  seen from the 

following simple example.  Consider  an  orientation dependence of 3 given  by: 

3 = 3 ,, [I+ E,  cos(46)I 3.5 

Where 3 ,  is an average interfacial  energy  and E, is again  a  measure of the four fold 

anisotropy and  is on the order of .01. We  shall  denote  by 100[010] a  solid-liquid system 

that is oriented with  the [loo] crystal  direction  normal to the interface  and [OlO] 

coincides with  the x direction.  The  stiffness for the lOO[OlO] case is 3 (1 + 1 SE, ). On 

the other hand, if  the  orientation is such  that 110 is the interface normal and 170 is the 

direction along the interface, or 110[ 1 TO], the stiffness is 2 (1 - ~SE,). The large factor 

multiplying E,, and the change of sign, for the different orientations illustrates that the 

anisotropy in  the stiffness is about one order  of  magnitude larger than  that of 3. alone. 

By monitoring the fluctuations in  the  solid-liquid boundary during MD simulations for 

several orientations, the large variation in stiffness can be obtained and,  by 

parameterizing the interfacial  energy as in  eq. 3.5, the anisotropy  in 3 can  be precisely 

determined. 

The fluctuation spectrum  method  requires  a means of accurately locating the solid-liquid 

interface as a function of x. The first step in extracting the interface position is 

distinguishing a  given atom as belonging to either the solid or liquid phase. In the past 

several methods have  been  proposed to identify  atoms in the crystalline phase vs. those in 
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topologically disordered regions [ 1  12-1 151. For the fluctuation spectrum technique, Hoyt 

et al. defined an order parameter 4 for the atomj as 

3.6 

where the sum runs over the twelve nearest  neighbors  of  a  given  atom, rj is the  position 

of each neighbor measured from the  atom  in question and r,,, are the positions of the 

neighbors for the ideal FCC crystalline lattice  in the specified orientation. The second 

step in locating the boundary position is  a  coarse graining procedure. Dimensions of a 

typical MD simulation for the 100[010]  orientation consisted of b=3 unit cells and W=64 
unit cells. The length in the direction  normal to the interface, the y direction, was 
approximately 128 unit cells and two  interfaces are present in the periodic cell. Similar 

dimensions were utilized for other crystal orientations and the total number of atoms 

range from 100,000-150,000. The x direction of the total cell  was  divided into several 

slices corresponding to the number of desired k points and similarly the y direction  was 

divided into slices whose  width  was  approximately an interatomic spacing. The average 

order parameter, denoted 4 ,  was  then  computed  by summing the individual order 

parameters over all the atoms in  each of the smaller cells in the system.  For  a  given x 

position, the function 4 vs. y is as shown  in  fig. 3.la where large (small) values  of 4 
signify the liquid (solid) portion of the  system. The data of fig. 3.la was collected from 

one configuration of  the simulation of pure  Ni using the EAM potential developed by 

Foiles, Baskes and  Daw. The abrupt,  nearly factor of five change in 4 precisely 

pinpoints the two solid-liquid interface locations and in particular the contour 4 = .7 was 

used as the defining position. By repeating  the procedure of fig. 3.la across  the entire x 

range, the full height function can be  generated. Figure 3.lb shows the interface position 

over  a portion of the total cell as determined  by the procedure just described (the  heavy 

solid line) superimposed on the actual  atom positions. The atoms in the figure were 

shaded based on the individual 4 j  values; g j  < .7 are shaded gray  and  correspond to 

solid atoms whereas  values greater than .7 are white, liquid atoms. It is clear from these 

results that the interface tracking method  is capable of accurately resolving small 

amplitude fluctuations. 
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Figure 3.2 shows the mean square Fourier amplitude vs. k on  a log-log scale for three 

different crystal orientations of pure Ni.  Averages were generated from snapshots  taken 

every .2ps (the time step was 2fs) for a total of 125ps in  an MD run  in  the  microcanonical 

ensemble. In the figure, the solid lines indicate a slope of  -2 and it is clear that the 

correct functional dependence with k as  predicted  by the capillary result of eq.  3.4 is 

reproduced over a  wide range of  wavenumbers. The offset of the three curves in fig. 3.2 

reflects the anisotropy in the stiffness for the three orientations. The anisotropy  can  be 

more clearly in  fig. 3.3 which  plots the reciprocal of the power spectrum vs. k 2 .  The 

slopes of the lines in the figure are proportional to the stiffness and the large between the 

100[010]  and  110[  1 T O ]  orientations, as discussed above, is evident. Hoyt et al. used the 

three stiffness values to generate  three  parameters, 2 ", E ,  and d , of the following 

expansion for the interfacial free energy: 

3.7 

The final term, absent in  most  phase field formulations, is a small correction  which 

allows one  to predict the interfacial energy of  any orientation. The predictive power of 

eq. 3.7 was tested on two other orientations,  100[012]  and  110[ 1121, and  the simulated 

stiffnesses agreed almost exactly with the 2 expansion. From eq. 3.7 the  authors were 

able to determine a 2, value of 326 d /m2 and an  anisotropy  between 100 and  1 10 of 

1.8%. , 

Subsequent to the Hoyt et al.  work  on  Ni,  the fluctuation spectrum  method  has  been 

applied to the EAM metals Cu, [116]  Au,  Ag,  [117], Pb [118] and AI [119]. Figure 3.4 

shows l/bW(IA(k)12) vs. k2for the case of Cu and fig. 3.5 shows  a log-log plot  of 

(IA(k)lz) vs. k for pure Au. The stiffness  vs. orientation dependence is  qualitatively the 

same as for Ni, although  in  the case of  Au the stiffnesses of the  100[010]  and  1 lO[OOl] 

orientations are nearly equivalent. Results for all the elements studied to date are 

summarized in table I. Three materials  parameters are listed, the melting point predicted 
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by the EAM potential, 3 and  the  100/110  anisotropy.  Numerical  values in parenthesis 

refer to experimental results  where  available. Three separate potentials for Ni  were 

investigated, the original FBD form,  the  Voter-Chen (VC) description and the most 

recent, potential developed  by  Angelo,  Baskes  and  Moody  (ABM)  [120].  Although the 

VC and FBD potentials predict a melting  point  reasonably close to the known value,  the 

ABM model does not. Also, the value of 3 varies  nearly linearly with the melting point, 

a result not unexpected based  on  the  Turnbull  correlation  between interfacial energy and 

latent heat and the fact that L is proportional to TM for most  materials. The experimental 

data for 3 ,  given in parenthesis  (the first entry for the case of  Au and Pb) are the results 

of the undercooling experiments performed by Turnbull. The agreement with  the 

simulated results is fair at best, but  the  comparison  with  the Turnbull data is suspect for 

two reasons. First, it is well  known  that the Turnbull values are consistently low, in fact, 

Jiang et al [ 1211 argue that the correct  interfacial energy is about 46% higher than that 

quoted by Turnbull. The second  reason for not placing too much emphasis on the 

comparison with experiment is the  melting  point  deviation as noted above. In the case of 

Pb,  which  was  modeled using the Limy Ong  and Ercolessi [97] potential, the melting 

point agrees quite well  with  experiment  and the solid-liquid interfacial free energy agrees 

within a few percent of  an experimental  value  [122] other than  the Turnbull estimate. A 

large discrepancy however, exists between computed and experimental [ 1221 interfacial 

free energy in the case of  Au. From  the  point of  view of solidification modeling it is the 

final column, the anisotropy, which is most critical. Here we see values consistently 

around the 1.5% level. 

3.2 The Kinetic Coefficient 

Unlike the solid-liquid interfacial free energy there are no measurements whatsoever  of 

the kinetic coefficient nor its anisotropyand atomistic simulations have proven invaluable 

in establishing reliable estimates for p and its orientation  dependence. The complete 

lack  of experimental data has lead  some  phase field investigations [80,81,123] to assume 

40 



t 

a kinetic coefficient based  on  the  model of Coriell  and Turnbull [ 1241. However, the 

Coriell and Turnbull result  represents  only  an  upper limit to the growth  velocity and MD 

simulations have since shown  the  estimate to be  a factor of 4  or 5 too high. On the other 

hand, the model of Broughton,  Gilmer  and  Jackson  [125,126] predicts the  growth 

velocity  vs. undercooling using rate theory  arguments  and,  in section 3.2.4,  we  will 

demonstrate that the BGJ model  is  an  adequate  description of the kinetic coefficient in 

the 100 and 1 10 growth  directions. 

The fluctuation spectrum method  appears to be the ideal simulation technique for 

extracting the small anisotropy  in 3. . However, there exists several techniques capable of 

determining the kmetic coefficient  from MD simulations and each falls into one of three 

broad categories. Forced  velocity  simulations  impose  a  specified velocity on each atom 

in the system and the temperature  at  the  interface  is  then  recorded. By contrast, free 

solidification runs impose a  fixed  undercooling everywhere and  monitor the rate at which 

the solid-liquid boundary  advances.  Forced  velocity  and free solidification schemes 

compute ,u by  determining  the  velocity vs. undercooling relationship, however, 

techniques which monitor  the  fluctuations  in  the  position of the interface provide a means 

of obtaining ,u precisely at the  melting  point. In this section  we  will  review each of 

above mentioned techniques, but  a  more  detailed  review  can  be found in ref. [ 1271. 

3.2.1 Forced Velocity Simulations 

Broughton, Gilmer and  Jackson  [125] (see also ref.  [126])  were the first to employ 

atomistic simulations to the study of crystal  growth  rates. These authors studied the 

solidifcation kinetics in  the  Lennard-Jones  system for both  the 100 and  11 1 crystal 

orientations. Simulation cells in  the  BGJ  technique consist of three regions aligned along 

the z direction. A large central  region,  referred  to as the dynamic region, contains the 

solid-liquid boundary and has no  temperature control. A thin  region at the bottom  of the 

cell is the static liquid region  and  contains  a  heat  bath  which controls the temperature at 

some temperature below  the  melting  point. Similarly a static solid region is positioned at 
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the high z end of the cell  and  again  a  heat  bath  maintains the same  temperature as the 

lower  heat  bath.  At  each time step, 6 t ,  in  the simulation, the numerical  solution  to 

Newtons equations of motion  are  supplemented by a  displacement of all  atoms  in the z 
direction, ie.  from  bottom to top of the cell, by  an amount V6t .  Since the entire system 

translates at constant velocity,  atoms  which  move  beyond the top solid region are 

annihilated  from the system  and  are  replaced  by  liquid  atoms  in the lower  region.  During 

the simulation the x and y dimensions of the cell  are  held fixed such  that the zero pressure 

crystalline lattice parameter is maintained  and  zero  pressure  in the z direction  is fixed by 

dynamically changing the  total  cell  length  during the MD runs. 

The BGJ method  involves  choosing  both 'the temperature of the heat baths  and an 

imposed  velocity. The undercooling for a  given  velocity is found by monitoring  the 

temperature at the interface during the run. To accurately  compute the average interface 

temperature the imposed  velocity  must be varied, by trial  and error, such  that the solid- 

liquid  boundary  remains  stationary  in  approximately the center of the dynamic region. 

BGJ  performed simulations over  a  wide  range of temperatures from just under the 

melting temperature (7'' = .61 in  reduced  units for the Lennard-Jones  system)  to 

temperatures  below . 1. An important  result of the  BGJ  study  was the observation of a 

significant  crystallization rate even  at  very  low  temperatures  where  the liquid diffusivity 

is known to be  negligibly  small. The BGJ  results contradict an earlier model of growth 

kinetics due to  Wilson [128] and  Frenkel [129] who  proposed  that  crystallization is a 

thermally activated process  with  diffusion  being the rate limiting step at  low 

temperatures. The modification of the  Wilson-Frenkel  model  proposed  by  BGJ  will  be 

discussed  in the section 3.2.4. 

In a  more  recent  work,  Celestini  and  Debierre [ 1301 performed forced velocity MD 

simulations, similar to  a zone refining process, capable of extracting the velocity vs. 

undercooling behavior. In the Celestini  approach  two  solid-liquid  interfaces  are 

established and  a  fixed  velocity is imposed  in  a  direction z perpendicular to the 

boundaries. Four  temperature  baths I, II, Dl and IV are established along z. Regions  I 

and II are maintained at a  temperature  below the melting point and thus the  region 
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z I  < z < z ,  is entirely solid  phase. Similarly, baths ID and IV are maintained  at T > T,, 

with all liquid phase between. The liquid  region  is located in  the center of the cell and 

periodic boundary conditions (and  constant  volume) are utilized such that a solid atom 

leaving the high z side subsequently  appears  in the solid at the low z end. The 

temperature baths are very thin (10-2OA) and temperature is controlled  via. explicit 

velocity rescaling. In between  the solid and  liquid thermostats, ie. between  regions I and 

IV and also, II and m, there exist large  temperature gradients. The  two  solid-liquid 

boundaries are found in  these regions, one region being the melting interface and the 

other is the solidifying front. Steady state, that is a constant temperature profile and  two 

stationary interfaces, is achieved after a few complete passes of the liquid zone  over  the 

entire length of the sample. 

An advantage of  the  Celestini-Debierre  technique over the BGJ method is that  any 

velocity can be  imposed  and  the two interfaces  adjust along the z direction  and  within  the 

temperature gradients until the proper  interface  temperature is maintained. A comparison 

of the steady temperature profile and  the  boundary positions establishes the  velocity- 

undercooling relationship. In other words, a search for that  velocity  which  renders  the 

interfaces immobile is not  necessary.  The  authors originally applied  their  technique to 

the study of solute segregation as a function of velocity  in a Lennard-Jones binary  system 

and they demonstrated good  agreement  between simulation results and  the  segregation 

model  proposed  by  Aziz [86]. However,  in a later study [ 13 13 the authors  have  extended 

their technique to the case of pure Au modeled using interatomic potentials of the 

embedded atom type.  It  was found that  the velocity-undercooling relationship is in 

excellent agreement with that obtained  via a free solidification procedure as described 

below. 

3.2.2 Free Solidification Simulations 

The free solidification technique involves a solid-liquid system with  periodic  boundary 

conditions equilibrated at the melting  temperature. Initially the system contains a small 
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volume fraction of solid. An atomistic  picture of the starting point system is shown in 

fig. 3.6. The system is then  "quenched" to some  specified undercooling and  allowed to 

solidify. During the MD run  the  latent  heat  generated is removed everywhere in the 

system by various established thermostat  methods  (Nose-Hoover, Langevin dynamics, 

etc.). The position of the  interface vs. time is monitored  most easily by tracking the total 

potential energy of  the system as described  in detail in ref.  [132]. Finally, due to the 

density difference between  solid  and liquid, constant volume simulation leads to a 

gradual build up of pressure during  crystallization  which  eventually halts soldification. 

Instead, constant pressure conditions are required  with  the pressure maintained  at zero 

throughout the run. 

The  free solidification method  has  been  applied to the study of crystallization kinetics in 

Cu and Ni [ 1321 and  Au  and  Ag  [117]  using the EAM. Velocity vs. undercooling 

behavior using the free solidification  analysis  has also been  used  by Briels and Tepper 

[ 1 141 in their study of crystallization  in  the  Lennard-Jones system and by  Tymczak and 

Ray  [133] in an MD investigation of  Na.  An example of velocity-undercooling results 

from the free solidification method  is  shown  in fig. 3.7. The data, reproduced from ref. 

[ 1 171, are results from EAM Au  and three low  index  growth directions are depicted, 100, 

1 10 and 1  1  1. The slopes of  the  heavy solid lines in the figure are a measure of the kinetic 

coefficient. For Au, and for all  EAM systems investigated  thus far, the ratio p,, /pll0 is 

found to be approximately a. The ratio is  also the ratio of interplanar spacings in  an 

FCC crystal and the significance of this  equality  will  be  discussed  in the section 3.2.4.  It 

should also be  noted  that  the &factor represents a fairly large anisotropy ( 

(&,,, -p,lo)/(ploo +pllo)= .17 ) and is an order of magnitude larger than the anisotropy 

in the interfacial free energy. As will  be  discussed  in  section 4, the large anisotropy of p 

has important consequences in continuum modeling of dendrite growth. 

A disadvantage of  the free solidification  technique is the fact that the computed velocities 

are subject to fairly large error and  the scatter is  much  greater  at  low undercoolings (see 

below). At temperatures close to melting,  the  velocities are sufficiently slow such that 
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even during long MD runs  the  interface  moves only a handful of lattice spacings and  thus 

large uncertainties are observed for AT < 10 - 20 K. Unfortunately  it is in this low 

undercooling regime where  many  detailed experimental studies of dendrite  growth  have 

been performed. What is desired  then  is  an MD technique capable of extracting the 

kinetic coefficient exactly at TM . As described  below,  techniques  based  on fluctuations 

provide such a capability. 

3.2.3 Fluctuations 

In 1997, Briels and Tepper [114] developed an MD technique for extracting the kinetic 

coefficient  by monitoring the fluctations in the total number  of  solid atoms for a solid- 

liquid system maintained  at  the  melting  point. The authors studied the  Lennard-Jones 

system and, an important ingredient of the method, utilized  an NVT ensemble.  Any 

fluctuation which  moves the position of the solid-liquid interface,  or  equivalently changes 

the number of solid atoms,  will  lead to a change in  pressure of the  solid-liquid  system 

owing to the fixed-volume constraint and the density difference between  the  phases. 

If we assume that the pressure  equilibrates  rapidly  on  the  time-scale of the atomic 

interface-attachment kinetics, the  fluctuation  will  lead to a change in  pressure  of  the 

system away from the equilibrium value at  temperature T. A chemical  potential 

difference between  the solid and  liquid  phases results, providing a restoring force which 

tends to return the  solid-liquid  interface to its equilibrium position. If ANs represents the 

change in the number of solid atoms  from  the average value,  the following deterministic 

equation can be  derived: 

3.8 

where the time constant z is  related to the thermodynamic restoring force and  is  given 

explicitly as: 

3.9 
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In the above expression the equilibrium  volume  per atom in the solid (S) and liquid (L) 

phase is denoted by v p 4 ,  K is the  isothermal compressibility and f r y  is the equilibrium 

number fraction of solid and  liquid  with N being the total number of atoms in the 

simulation. The ratio N u  is the total  interface  area normalized by the specific area of a 

single atom in the solid. Briels and  Tepper  assume  a-priori that the interface velocity is 

proportional to the chemical potential  difference  between the liquid and solid, ,uL -,us . 

The constant k appearing in  eq.  3.9  reflects  this proportionality. Specifically, one has: 

3.10 

where d is the interplanar spacing of the  crystal. 

From eq. 3.8 it is straightforward to show  that the correlation function given by 

( A N s  (t)AN, (0)) decays exponentially  according  to: 

3.1 1 

The angular brackets in the above  expression  denote averages over many arbitrary time 

origins. 

Briels  and Tepper developed an  order  parameter  which distinguishes quite effectively the 

solid and liquid atoms in the simulation  and  they computed the above correlation function 

vs. time. . From the resulting value of z the constant k can be derived from eq. 3.9 and 

the velocity vs. undercooling behavior is established. The solidification kinetics derived 

from the fluctuation technique was  found  to  be  in excellent agreement  with  both  a  non- 

equilibrium (ie. free solidification) simulation  and the previous work  by BGJ. 

A distinct advantage of the Briels and  Tepper scheme is the fact that the kinetic 

coefficient is computed precisely  at  the  melting temperature. Since equilibrium 

fluctuations are monitored, one does  not  have to rely on an often inaccurate extrapolation 

of the velocity vs. undercooling data to zero undercooling in order to determine p . 
A disadvantage of the method  is  that  it is formulated specifically for an  NVT ensemble. 
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Rather than monitoring the  average  position of the solid-liquid interface during an MD 

simulation as was  done by Briels  and  Tepper, it is possible to extract  the  value  of p from 

the kinetics of the entire k-space  fluctuation  spectrum of the interface position. 

Consider again the quasi-2D  solid-liquid  system described in sect. 3.1. If 6 is the height 

of the interface as a function of x, then, for small amplitude fluctuations at the melting 

point, the time dependence of 5 can  be  written  as: 

-- at - - rv25 + q ( x ,  t )  
Y at 3.12 

The first term on the right  hand side of the above expression represents curvature driven 

motion  and r = 6 + 7 ”)7” / L . To derive  an  appropriate expression for the noise term 

r]  , one first makes the  usual  assumption  that the noise is uncorrelated in space and time. 

Second, the value of r] is  chosen  such  that the equilibrium fluctuation spectrum predicted 

by eq. 3.12 must be  the  same  as  the  result  obtained from capillarity theory, ie. eq 3.4. 

The above two requirements  imply  that the noise term  possesses  the following form: 

The solution of eq. 3.12 using eq. 3.13, is given  by: 

3.13 

3.14 

where A(k,O) refers to the  amplitude  evaluated  at some arbitrary  time origin and  the 

decay constant is given  by z = 1’ . A fit of the full time dependent correlation 

function to the  exponential  form of eq. 3.14 for various  values  of k, leads to a decay 

constant which varies as k 2  with  slope  proportional to p . 

Results for the kinetic fluctuation  spectrum technique for extracting the value of p are 

shown in fig. 3.8 for the case of pure EAM Ni. Simulation details are described fully in 

ref. [ 1081. The large scatter in  the  data  suggests  that long simulation runs are required to 

accurately determine p , a clear disadvantage of the fluctuation spectrum method. 

Nevertheless, the correct k2 dependence is reproduced  in  the results and the anisotropy 
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between 100 and 110 interfaces  can be seen.  The  best fit slopes, shown by  the  solid lines 

in fig. 2, lead to kinetic coefficient  values of 52 cml s I K for the 100 direction  and 40 

cml s l  K for 1 10. In reasonable  agreement  with  the free solidification results. The 

anisotropy is found to be = 1.3 which,  again,  is close to A. 

3.2.4 The Broughton, Gilmer and  Jackson Growth  Model 

The earliest model of crystallization kinetics is due  to Wilson [128] and  Frenkel [129]. 

The rate expression is given by: 

v = (DLd  /A2)fe-a1kB ti - e-AplkBT 1 3.15 

where d is the interplanar spacing of the  growing crystal, Ais the  mean free path of  an 

atom  in the liquid and f represents  the  fraction of liquid atom collisions with  the  solid 

which result in a crystallization event. The  thermodynamic driving force in  the above 

model is contained in  the  term e ti - e-41kBT 1 where AS and Ap are the differences 

in entropy  and  chemical  potential  between  the  solid  and liquid phases. For a derivation 

of the  thermodynamic driving force  term  using rate theory  arguments  the  reader is 

referred  to  the  review article by  Jackson [ 1341. 

The  Wilson-Frenkel  model  predicts  that  growth  involves  two  thermally  activated 

processes, one reflecting the free energy  difference  between the solid and  liquid  and  the 

second arising from the diffusivity. At  low temperatures the diffusivity  term  should 

dominate,  however  the  Lennard-Jones  results of BGJ clearly showed  that  the 

crystallization rate remains  high  even  in  temperature  regimes where DL = 0 . 

BGJ  modified  the  growth  model by replacing  the  diffusion term by a thermal  velocity 

contribution. The final form of the  BGJ  model  is  given  by: 

v = (d1A)f  (3k,Tlmy e 12 -ASlkB -e -AplkBT 1 3.16 

Here 3k,T lm with  the m being  the  atomic  mass is the thermal  velocity in the  liquid and 

iz represents an average  distance  traversed  by an atom. The authors  argue  that 

iz = .4a where a is the lattice constant. 

4 
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The replacement of the  diffusion  coefficient by the thermal  velocity implies that 

crystallization in the Lennard-Jones  system  does  not require a local  rearrangement of the 

liquid structure near the boundary  in order to achieve a successful atomic hop  from liquid 

to solid. As summarized by Jackson  [135],  there exists two classes of materials.  One, 

which includes glasses, semiconductors  and  other directionally bonded materials, is well 

characterized by the Wilson-Frenkel  model. The second class can be  modeled  using the 

BGJ formalism and includes metals  and  model systems which are well  described  by 

spherically symmetric interatomic interactions. EAM metals clearly fall into the latter 

category. 

In what follows we  would like to compare  the  BGJ model with available MD data for 

various EAM systems. To do so we  will first approximate the temperature  dependence 

of the solid-liquid free energy difference as AH fus -TU, where AH is  simply  the 

potential energy difference found from separate MD runs and A S h y  = A H f i y  / T ,  . 

The only remaining unknown  is  the  probability f For this quantity we shall simply use 

the best fit value obtained  by  BGJ  in  their  Lennard-Jones  study.  Notice, there is  no  reason 

to suspect that f is the same for all  growth  directions. Nevertheless, for lack  of a detailed 

theoretical prediction of the  attachment  probability,  we  will invoke an isotropic 

fa t  the outset. 

Figure 3.9 shows a comparison of the solid-liquid interface velocity obtained from MD 

simulations vs. the velocity  predicited  by  the  BGJ  model. The MD simulations represent 

free solidification results for the 100 and 110 growth directions in a variety of EAM 
metals.  Although there is fairly large uncertainty  in the simulation data at  low  velocities 

(low undercoolings), the  agreement  between  model  and simulation is quite good up to 

quite large velocities. At  very  high  undercoolings the model overestimates the  interface 

velocity and the possible origin of this discrepancy is discussed in ref. [ 1 171. In 

addition to the results for EAM systems,  Tymczak and Ray  [133]  also  report  good 

agreement between MD simulation  and  BGJ  theory for BCC Na modeled using 
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an interatomic pair potential based  on  pseudopotential perturbation theory. The results of 

fig. 3.9 indicate that the BGJ  model  is a good  prediction of the kinetic coefficient in 

elemental metals provided, as discussed  below,  the  low  index 100 and 110 orientations 

are considered. 

The presence of the interplanar spacing  in  eq. 3.16 implies that the ratio of velocities 

between the 100 and 110 growth direction  is  indeed A. As discussed above the 

relationship has been confirmed in all  three MD simulation  techniques. Therefore it is 

now safe to conclude that the high  anisotropy  in the kinetic coefficient, first observed  by 

Hoyt et al. [ 1321, is in fact correct. 

Although the BGJ model of crystallization  kinetics  is  obeyed quite well for the 100 and 

1 10 orientations, the agreement between  model and simulation is poor for the 1 11. 

Typically, the MD results show a much  lower  velocity  than  predicted  by  eq.  3.16, the 

BGJ model predicts that the 1 11  velocity  should  be,  in fact, higher than that of  100.  Part, 

but not all, of the explanation for the  sluggish  11 1 kinetics is due to the  presence of 

stacking faults. In 1988 Burke, Broughton  and  Gilmer  (BBG)  [126] investigated the 

kinetics of crystallization in  the  Lennard-Jones  system for the 100 and 1 11 interfaces and 

offered one explanation as to the slower  than expected growth in the 11 1 direction. The 

authors argue that  an  atom from the liquid  phase can attach  itself to either an  FCC site or 

an HCP site on  the adjacent 1 11  solid  surface. If the stacking fault energy is sufficiently 

low  and/or the driving force sufficiently high, islands of defective HCP atoms may form 

during the course of solidification. Since, eventually,  the resulting solid is defect free, the 

system must "anneal" out these HCP  islands  in  order for crystallization to proceed. Thus 

the thermally activated growth step is not  the  thermal  motion  of atoms in the liquid as 

assumed in the BGJ model, but  rather  the  conversion of all layer atoms to the  FCC 

orientation. As discussed below, we  conclude  that  the explanation of Burke et al. is also 

valid in the case of  Au and Ag, and by extension Cu and  Ni. 

The first evidence for the existence of  growth limited by the annealing of faults is a size 

dependent crystallization rate. BBG  found  that the 11 1 growth velocity is faster for a 
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system in which the area of the  solid-liquid  interface is decreased. The authors argue that 

in  a small system the defect clusters cannot  grow as large before contacting clusters from 

the periodic image of the cell.  Since it is the  cluster circumference to area  ratio  which 

determines the rate of annealing,  the  smaller  systems exhibit a  higher  growth  rate. Figure 

3.10 shows the size effect for the  case of  Au. Here  the  velocity vs. undercooling was 

obtained for a small system whose  solid-liquid  boundary area measured  1728 A2 
(seven (1-10) atomic planes by four (1 1-2) planes)  and  a large system with  an interface 

area of 5876. A2 (12 (1-10)  x  8  (1  1-2)).  Consistent  with findings of BBG  the smaller 

system size possesses a  significantly  higher  growth  rate  in the 11  1  direction. No such 

size effect is found for the 100 or 110  growth directions. 

A second indication that  the  BBG  mechanism  is  operative for the case of  Au and  Ag, is 

provided  by  a detailed examination of the  structure of the  solid-liquid  boundary. In what 

follows it will be convenient to distinguish  atoms of the solid phase from atoms 

belonging to the liquid and for this  purpose  the  order  parameter of eq. 3.6 is used. Recall 

if 41~ > .7 the atom is considered to be  part of the liquid phase and  vice-versa for the 

solid. However, in  the case of the  11  1  orientation,  high  values  can also indicate an atom 

in  a HCP defect site on  the  solid  surface, as discussed  below.  Figure 3.1 1 shows a cut 

parallel to the solid-liquid interface  at  a  depth  well  within the solid  phase. The figure was 

generated from the large solid-liquid  system of pure Au. In fig. 3.11 , and subsequent 

figs.  3.12 and 3.13, the white  atoms  denote  solid  atoms  whereas  the  gray atoms are liquid 

or  defect .atoms. The crystalline plane  clearly shows the six fold symmetry of the 11 1 

plane and at this position far from  the  boundary plane there a  very  few  gray "defect" 

atoms. Figure 3.12 depicts a  similar  plane  at  a  position  in  the liquid far from the solid- 

liquid interface. The thickness of the  cut  was  kept the same as in  the previous figure. In 

this position the atomic arrangement  is  highly  disordered, there is little evidence of six 

fold symmetry and most atoms are  colored  gray. The proceeding figures should be 

compared  with fig. 3.13  which  shows  the  atomic  arrangement for the layer adjacent to the 

liquid phase. Here roughly  half  of  the  atoms are white  and. exhibit six fold symmetry. 

These atoms occupy the proper lattice positions of the solidifying solid. However, there 

are also many other atoms which also exhibit  six fold symmetry, but, being colored  gray, 
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do not lie on  perfect FCC sites. These  atoms  represent  defect clusters on the surface  and 

three  such  regions  are  shown by heavy  black lines in  fig.  3.13. For the regions  in  the 

upper center part of the figure and  for  the  area  to the left of the drawing, one  can  show 

that the atomic arrangement is HCP by extending the FCC atom  planes  in  nearby  regions 

as  shown  by  the light black  lines.  The  displacement of the gray  atoms from the ideal 

planes (white atoms) is one  half of the  11-10 d spacing as expected from a  stacking fault. 

The continued  crystallization of the system  requires that the faulted regions as shown  in 

fig. 3.13 must shrink at the expense of the  perfect FCC regions  and as a  result the 1  1  1 

kinetics are slower  relative to the  100  and  110 orientations. 

The region  delineated in the upper  right  portion  of fig. 3.13 shows a six fold symmetric 

arrangement of gray atoms, yet  the  region  is  rotated  by 30 degrees  with  respect to the 

underlying  1  1  1 surface. Such a  rotation  implies  that there are alternate atoms in  FCC  and 

HCP positions in the defect  cluster  and  the  nearly equal atom spacing means  there  exist 

some  displacement of atoms  from  the  hollow  sites.  Although the region is an interesting 

observation, it is doubtful  that  such  defect clusters play a  major role in the growth 

kinetics,  as  they  appear  to  occur  infrequently. 

Unfortunately  the  presence of stacking  fault islands does  not fully explain  the 

discrepancy  between the simulated  velocity  vs.  undercooling  behavior and the  growth 

model of BGJ. The fast growth  rate of the  small system size, which minimizes the effect 

of stacking fault formation, shown  in fig. 3.10  is still much less than  that  predicted by 

BGJ. Recall  from  eq. 3.16 that the crystallization rate is proportional to the lattice d 

spacing  meaning  that the 1  1  1  orientation ( d  = &/3 ) should solidify more  rapidly  than 

the 100 orientation ( d  = a/ 2). The relationshoip p1,, > plw has  never  been  observed in 

atomistic simulation  even for small  system sizes. Huitema et al. [136]  offer an 

explanation for the slow  growth of the  1  11  direction. These authors argue that  the  kinetic 

coeffcient consists of two mechanisms  which  add  in series, ie. l / p  = l/,uorg + l / p h p  . 

Here "org" refers to the mechanism of intralayer  organization of the liquid atoms  into the 
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crystalline lattice and phOP denotes  the  hopping  within the layer to increase the density. 

From a detailed examination of their simulations of crystallization  in the Lennard- 

Jones system the  authors  were able to show that the dominant mechanism  in the 100 

direction is the pOrg term whereas the hopping contribution is large for the 1 1  1 direction. 

The BGJ model  assumes a mechanism of atom  attachment from the liquid to the solid 

and thus neglects  any  mechanism of the type phO,,. Although the Huitema et al. 

arguments provide a plausible explanation for the observed  behavior, the theory is at  this 

point qualitative and a fully  quantitative description of the crystallization of the 1 1  1 

orientation remains an  open  question. 

3.3 The Diffusion Coefficient 

In phase field or sharp  interface  models  of solidification the diffusivity  in  the 

liquid is invariably assumed to be lxlOP5 cm2 / s . This value  however is merely  an order 

of magnitude estimate and  from  what little experimental data exists it  is clear that the 

assumed DL can be in  error  by a factor of two or more. Since the diffusion coefficient 

sets the velocity of interface motion  through the solute conservation  boundary  condition 

its true value is important in  modeling  the correct morphology and growth rate of a 

dendrite. MD simulations provide a straightforward  means of obtaining the diffusivity  in 

the liquid and in this section we  review some results obtained from EAM elemental 

metals. Continued advances  in  computer  power have made it possible to compute DL 

using first principles MD techniques  and thus results from ab-initio MD will  be 

summarized as well. 

There are two methods for computing liquid diffusivities from MD simulations 

[137]. The first relates the diffusion coefficient to the long  time behavior of the  mean 

square displacement of  an  atom  and is given  by: 
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The position of  an atom at any time t is  denoted by r(t) and  the  angular brackets indicate 

an average with  respect to all  atoms  in  the  simulation  and  over  all time origins. The 

second technique for computing DL is through  the  formulation of the velocity-velocity 

correlation function, Z(t) ,  which  is  defined as: 

Z(t) = i ( U ( t )  * u(0)) 
3.18 

where u is the velocity  vector. The diffusivity is related  to the function Z(t) by a 

straightforward integration  over  all  time,  that  is: 

DL = r Z ( t ) d t  0 

3.19 

Figure 3.14 shows the mean square displacement,  that is the  bracketed term in eq. 3.17, 

vs. the time for liquid Ni modeled  using  the FBD potential at two  temperatures;  1600  and 

2000K. The results  are  reproduced  from  the  work of  Hoyt et al. [132]. After a short 

transient  period of approximately  .2ps a linear  relationship is established with a slope 

equal to 60,. The increased  diffusivity  with  increasing  temperature is clearly observed. 

Figure 3.15 shows the velocity-velocity  correlation  function  normalized by its value  at 

e 0  vs. the time for Ni. The two  temperatures  shown are again 1600 and 2000K. It can 

be seen that all velocity  correlations  decay  rapidly  and  are  essentially zero after  about 

Sps.  The negative correlation  observed in the  vicinity of the minimum at about 75fs is a 

well known effect in  dense fluids and  arises  due  to  backscattering resulting from the cage 

of atoms 'which surrounds  any  given  atom.  As is also  typical  in fluid systems this so- 

called cage effect becomes less pronounced  as the temperature is increased. The 

diffusion coefficient as determined by eq. 1 at  2000K  was  found  to be 5 . 5 4 ~ 1 0 ~ ~  cm2 / s  

whereas the diffusivity  computed  via  the Z(t)  correlation  function  was 5 .67~10-~  cm2 / s  . 
The error of about  2.5%  demonstrates  the  equivalence of the two  methods. 

Figure 3.16  plots the diffusion  coefficient of Ni (filled squres) and Cu (filled 

circles) as a function of temperature. At  moderate  undercoolings  and at the short time 

scales required for a diffusivity  computation,  there is no evidence in the MD simulations 

to indicate crystallization (for example, a drift  in  the  average  temperature  in the system). 

Therefore, the diffusion data includes  three  points  in the undercooled  regime  and  the 
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range of the data is from 140K  below  the  melting  temperature to 3 10K  above T,. The 

vertical lines on  each curve indicate  the  EAM  melting temperatures. Data for both  Ni 

and  Cu suggest a nearly linear dependence  with  temperature consistent with experimental 

data for several pure metals and  in  agreement  with  phenomenological  theories  of liquid 

phase diffusion [ 1381. A linear  regression analysis yields the following temperature 

behavior: DNi = 6 . 9 2 ~ 1 0 ~  (T - TM )+ .382  and D,, = 7.219x104(T - T,,, )+ .332  in  units 

of lo4 cm2/s (k /ps ) .  

The symbols filled with X’s in  fig.3.16  label the diffusion coefficients computed 

by Allemany et.  al.  [139,140]  using  the  Voter-Chen (VC) EAM potential rather  than  the 

Foiles-Baskes-Daw potential. It should  be  pointed  out  however that a significant 

difference between the computations of  Hoyt et al.  and those of Alemany et al. is the fact 

that the latter study used the  experimental  value of the liquid density when  performing 

the MD simulations. The filled symbols of fig. 3.16  were  obtained  by equilibrating the 

liquids at each temperature (zero pressure) to obtain the EAM  predicted  density. The 

results for Ni are within fairly good  agreement,  the  VC  results  being approximately 10- 

15% lower and  the trend with  temperature  appears to be  consistent.  For  Cu  the 

agreement is somewhat  worse,  on  the order of  20%, and the  VC potential again  yields a 

lower value. The open circles shown  in  fig. 3.16 are results from the  capillary reservoir 

technique of Henderson  and  Yang  [141].  Agreement  between  the  present simulations 

and experiment is fairly good,  particularly  at the lower temperatures,  with the EAM 

predicting consistently lower values.  Because  of  the scatter in the  experimental data it is 

difficult to confidently glean the behavior  with  temperature, but it appears that the 

Simulations predict a somewhat smaller slope  than  the  measurements.  It is interesting to 

note that the FBD potential is in  better  agreement  with experiment than the Voter-Chen 

results shown in fig. 3.16. The improved  agreement is surprising given  that  the  Alemany 

et al. investigation fixed the number  density of the liquid equal to the experimental  value. 

The closer agreement  between  EAM  and experiment is also surprising when  one 

compares the results of an  ab-initio  MD  study  [142]  which  is  denoted by the symbol CB in 

fig. 3.16. The ab-initio result, which is of course free of any inaccuracies associated  with 

the assumption of an empirical potential, is in fact furthest removed from the 

experimental results. 
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In 1996, Dzugutov [143] proposed  a  universal scaling re Jationsh .ip between 1 :he I diffusion 

coefficient and the excess entropy of a  liquid.  A similar scaling law  was developed 

earlier by Rosenfeld [144]. The Dzugutov  scheme starts with  the definition of  a scaled 

diffusivity defined by D* = D,v-'o-' where o is the hard sphere diameter and v is the 

collision frequency according to the well  known Enskog theory of atomic transport [ 1451: 

3.20 

Here g(o) is the radial distribution function evaluated at the hard sphere diameter [in 

practice o may be interpreted as the position of the first peak  in g ( r )  1, p is the number 

density  of the liquid and the square root  term is, apart from a numerical constant, the 

thermal velocity appearing in the BGJ  model. Dzugutov proposed that D* is 

proportional to e' where S is the excess entropy  and demonstrated its validity for the 

hard-sphere, Lennard-Jones and  a  variety of other pair potential systems. It is not clear 

however,  if the scaling still holds for interatomic potentials of the  many  body type or  for 

potentials which include a strong contribution from directional bonding. Hoyt et al. [ 1461 

performed MD simulations to test  the  Dzugutov  law for these latter two cases and the 

results are shown in fig. 3.17. For the  EAM elements Au, Ag, Cu, Ni, Pd and Pt as wells 

as the binary systems Ni3Al  and  AuPt  the data collapse shown  in the figure implies the 

scaling behavior is valid for the EAM multi-body form. Si was  modeled using the 

Stillinger-Weber [147] potential which  includes angular dependent contributions to the 

bonding. It is clear from fig. 3.17 that the scaling  law fails in the case of Si and Hoyt et 

al. argue that the source of the discrepancy arises from the inability of the Enskog 

frequency to capture the true kinetics in  Si. 

The lone ab-initio data point for Cu  in  fig. 3.16 is due to Pasquarello et al. [142] and 

represents the first time first principles techniques have been used to study dynamic 

properties of liquid metals. The authors  used the well  known Car-Parinello [148] 

molecular dynamics scheme. In more  recent times, ab-initio MD studies of metals have 

utilized the more efficient Vienna ab initio simulation package or VASP [ 149-1521. The 
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VASP code makes use of ultrasoft  pseudopotentials and an  expansion of the electronic 

wave functions in plane waves.  Typically  the local density approximation is employed in 

simulations although gradient  corrections are possible. Kresse  and  Hafner  [153] 

computed the diffusivity of liquid Cu and  V  and  Kirchhof et a1 [154] obtained the 

diffusion coefficient in liquid Se using  the  VASP approach. In addition, liquid Fe and 

Fe-S alloys at ambient  pressures  and  at  pressures consistent with those of the earth’s core 

were studied by Alfe et al.[  155-1571  and de Wijs et al [ 1581. Diffusion of  both  K and Sb 

in liquid K3Sb and  KSb  alloys  were  reported  by Seifert-Lorenz and  Hafner[ 1591. 

Asta et al. [ 1601 used ab-initio MD to study diffusion of Ni and A1 in  a liquid of 

composition NizoAlgo and  compared  the results with three versions of EAM potentials. 

The  mean square displacement of  an atom  vs the time is  shown  in  fig. 3.18 where the 

data was taken after an equilibration time of  1.3 ps . The temperature  of the liquid was 

1700K.  Although the maximum  time  in  fig.  3.18 , 5.6 ps  , is considerably less than  in 

simulations involving empirical potentials,  a  linear relationship is  nevertheless observed. 

Diffusion coefficients for Ni, 24x104 cm2 / s ,  and  AI, .42x10-4cm2 / s ,  are 

considerably less than the values from EAM simulations. The discrepancy may be due to 

a subtle electronic charge transfer  effect  which is not captured in the EAM formalism. 

3.4Binarv Allovs 

Atomistic simulations of solid-liquid interface properties is considerably more difficult 

than the case of elemental systems. In an equilibrium solid-liquid system for a binary 

alloy the concentrations of the two  phases are different and, in addition to the 

concentration difference between the bulk solid and liquid, there  is also the possibility of 

equilibrium segregation of the solute species to the interface. The time scales to establish 

equilibrium concentration profiles via  diffusion in the liquid or solid are much too long 

for MD simulations and one is forced to utilize Monte-Carlo techniques. MC simulations 

in the semi-grand-canonical ensemble (or the transmutation ensemble see eg [ 1611) are 

ideally suited to the problem of equilibration  in solid-liquid systems as the ensemble 
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allows for not only atomic displacements,  but changes in chemical identity as well. 

However, changes of a solute atom to a solvent atom, or vice-versa, are performed under 

an imposed chemical potential difference between the two species. Therefore, the 

creation of  an equilibrium solid-liquid  system  at a given  temperature  requires a prior 

knowledge of the solution  thermodynamics of the alloy and  the solidus and liquidus 

curves in the phase diagram. In this section  we  will  review  thermodynamic integration 

techniques to compute thermodynamic properties of alloys and  we  will summarize MC 

results of interface structure and  segregation. 

To date only a few studies have  been  devoted  to the properties of solid-liquid interfaces 

in alloy systems. Huitema et al. [ 1621 examined crystallization kinetics in  Lennard-Jones 

mixtures using MC and  identified the transition from smooth to rough  growth as a 

function of solute-solvent interaction strength and temperature. Nonequilibrium 

partitioning and solute trapping effects during solidification have  been studied using MD 

in Si-Ge alloys be Yu et a1 [163]  and  in  the Lennard-Jones system in the  aforementioned 

work of Celestini and Debierre. Interface structure and diffusion profiles in  binary  hard- 

sphere systems [ 164,1651  and  model ionic alloys [ 1661  have also been  investigated  with 

MD. In particular, Davidchack  and Laird [ 1651 analyzed the density profiles across the 

100 and 1 1 1 solid-liquid interfaces  in mixture of hard spheres with a diameter ratio equal 

to .9. The authors found that equilibrium segregation effects were minimal, but  cautioned 

that this conclusion may  be  affected by the difficulty in  obtaining chemical equilibrium 

on the time scales of MD. 

Ramalingam et al. [ 1671 outlined an  MC  method for computing the solid-liquid phase 

boundary in binary alloys as a first step in studying interfacial properties. The system 

chosen for study was EAM Cu-Ni, dilute in Cu, where the interatomic potential  was 

generated by Foiles [ 1681. First, the  chemical potential difference of pure Ni  in  the solid 

and liquid phase can be found via  the  thermodynamic  relation: 

3.21 
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Where H is the enthalpy per  atom.  Equation  3.21  can be integrated from the known 

melting point, where pNi = p N i ,  such  that  the  chemical  potential difference vs. 

temperature function can be  determined.  With the chemical potential of pure  Ni 

established, the Gibbs free energy  as a function of  Cu concentration ( X,) can  be found 

S L 

using a second thermodynamic  relation: 

3.22 

Where A p  = pNi - pcu is the chemical  potential difference between  Ni  and  Cu  in the 

solid or liquid phase. To determine the RHS of eq. 3.22,  MC simulations in the semi- 

grand-canonical ensemble are performed  on  the  bulk solid and liquid systems. In the 

simulations an  imposed  value of A p  generates the equilibrium concentration of Cu. 

Specifically, A p  vs. X ,  data is fit to the following functional form: 

3.23 

where the  first term on  the RHS side represents the ideal contribution and the final term 

describes departures from ideality.  Once  the coefficients Ai are found, eq. 3.23 can be 

integrated to yield the free energy 

G(T, X ,  = G(T, X ,  = 01 + ~ ,T[x ,  In X ,  + (1 - X ,  >ln(l- X ,  I] 
n 

+ x A i X E  /(i + 1) 
i=O 

3.24 

The first term on the RHS is the  chemical  potential of pure Ni  and for computing phase 

boundaries one can set pki = 0 and  determine the liquid chemical potential using the 

integration of eq. 3.2  1.  Using the thermodynamic  integration procedure, Ramlingam, et 

al. find good agreement between  the EAM Cu-Ni  phase  boundaries  and  those of 

experiment. For example, the  MC  simulations  yield a segregation coefficient (at 

T=1750K) of k = X:u / X:, = .5 whereas  the  experimental  value  is .6 at  1642K.  Actual 

composition in the liquid phase is X ,  = 10.1%  and X ,  = 5.0 % for the solid. 



With the solution thermodynamics of Cu-Ni established the authors generated density 

and concentration profiles  in  solid-liquid  simulation cells for two different interface 

orientations, 100 and  1 1 1.  Density  profiles were very similar for both orientations and an 

effective interface width  of 7.2 2.9 A was found. From the equilibrium concentration 

profiles an  important  interface  quantity,  the relative absorption, could be  determined. 

Denoted by rr) the relative  adsorption coefficient is defined  as the excess number of 

Cu atoms at the interface if the Gibbs dividing surface is chosen such that the excess 

number of Ni atoms is zero. l?r) is independent of the position of the dividing surface, 

a necessary property of excess  interface quantities, and  gives  a measure of the 

concentration dependence of the solid-liquid interfacial free energy. Ramalingam et al. 

found the following adsorption  coefficients, in units of atoms lnm2 ,  for the two 

interfaces I'r) = .04 f .71 for 100 and -.64 k .60 for 11 1. Since a monolayer of  Cu 

corresponds to 15.0 and  17.3 atoms/nm2, it was  concluded that in the Cu-Ni system 

negligible adsorption at the solid-liquid  interface takes place. 

The  MC procedure can also be  employed to generate equilibrium quasi-2D solid-liquid 

which can then be used in an MD computation of the solid-liquid interfacial free energy 

(sec. 3.1). Results of the fluctuation  spectrum for Cu-Ni  in three different orientations 

are shown in fig. 3.19. The simulations  were  performed  at  1750K and the liquid and 

solid compositions are approximately  those quoted above. A 3 ,  value of 268 mJ l m 2  

and an anisotropy of  1.2%  were  determined. The results represent the first computation 

of the anisotropic solid-liquid  interfacial free energy in  a  binary  alloy. 

4. Experimental  Validation 

Since atomistic simulations can provide  the difficult to measure E ,  anisotropy and the 

nearly impossible to measure quantities ,U and €4" , it is possible to perform continuum 

level computations of solidification with  no adjustable parameters. Such a study was 

recently conducted by  Bragard et al. E451 who  derived dendrite growth velocities in pure 
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Ni as a function of undercooling. Ni provides  an  ideal test of phase field modeling.  Not 

, only has Ni  been  well studied in MD studies, but  experimental data of the dendrite 

velocity vs. undercooling  behavior for Ni is available from  two separate experiments 

[ 169,1701 (see also [ 1711). Both  experiments  utilized  magnetic levitation of Ni droplets 

in order to avoid heterogeneous  nucleation  at container walls,  thus allowing large 

undercoolings to be studied. Also, both  experiments  used a needle trigger to initiated the 

solidification reaction. The velocity of the  resulting  solidification front was  measured  by 

the abrupt change in surface temperature  as the front passes. Willnecker et al.  [169] 

monitored the temperature drop using  two  photodiodes  in  two  regions  of  the droplet and 

determined the velocity  by the time  difference  between the front amval time  on  each 

sensor. Lum et al.  [170]  used a fast  high  resolution  video  camera that captures the 

thermal profile of  the entire surface and  thus  provides  information  about  both  velocity 

and morphological evolution of the  solidification front. 

In the initial phase field simulations, Bragard et al. found that  the dendrite tip velocity 

became independent of the interface  thickness for values of the parameter A close to 

unity. The result A = 1 is equivalent to choosing  an interface width on the order of the 

nanometer scale of the  capillary  length  and  thus  the simulations become quite inefficient. 

Upon further investigation, the authors found that the temperature variation across the 

solid-liquid diffuse boundary  was  small  compared to the interface undercooling, meaning 

the correction term to the kinetic coefficient resulting from the  thin interface limit, ie. the 

last term .of eq. 2.25, was  negligibly small for the case of pure Ni. The severe constraint 

on the interface width also resulted  in a velocity  vs.  undercooling behavior which  was 

nonlinear as A increased. MD simulations.indicate that for the largest dendrite velocities 

accessed in experiments, 60-80m/s, the  interface should remain a linear function of 

undercooling. To circumvent the  above  problems the authors  modified the form of the 

last term of the free energy functional in eq. 2.1 1 from f(4) + g ( # ) h  to: 

f ( 4 )  + G ( W g ( 4 )  4.1 

The new function G cannot be  written  down analytically, but  was derived through a 

series of phase field computations of a planar solid-liquid boundary, moving in  one 

direction, at various undercoolings. G, then, is  that function which maintains the proper 
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linear relationship between velocity and  undercooling  with  a constant of proportionality, 

that is the kinetic coefficient, appropriate for pure  Ni. Defining the new function G and 

mapping its dependence on h effectively lifts the constraint on interface width  and 

efficient implementation of the phase field model is again  possible. 

Bragard et al. studied dendrite velocity for undercooling  as  high as 350K. The random 

walker technique was utilized to capture  the far field thermal field and the simulations 

were performed in  three dimensions. The tip velocity vs. undercooling phase field results 

are shown by the solid line and  the  black  triangles in fig. 4.1. The open symbols 

represent the two experimental results.  Overall  the agreement between simulation and 

experiment is excellent and it must  be  reiterated  at this point that the continuum model 

contains no adjustable parameters. In addition to the comparison with experiment, the 

authors also examined the sensitivity of the results to the values of the two anisotropies in 

the problem. They found that  the  results  were  largely independent of the anisotropy in 

whereas both the solidification rate and  the  growth morphologies depend sensitively on 

the anisotropy of the kinetic coefficient. The Ni simulations point to the need of including 

both E ,  and €4" in  any realistic simulation of dendrite growth. 

For undercoolings above about 200K  the  phase field prediction lies consistently above 

the experimental data. The experiments  tend to show a leveling of the curve above 

AT = 200 K. This somewhat abrupt change in slope w& first observed by Walker in the 

1960's  [172] and the experiments of Lum  et  al. suggest that the break is correlated with  a 

change of  morphology. For undercoolings  below  200K  the solidification front remains 

smooth whereas  above this critical undercooling  the front appears angular. (The video 

imaging cannot resolve individual dendrite  tips,  but  only the macroscopic front.) The 

origin of the change in slope of the V vs. AT function remains an open question, but 

clearly the explanation must stem from  some effect which has been left out of the phase 

field model.  Candidates include convection  in the liquid or the presence of trace 

impurities, most  likely oxygen, in the Ni  droplets. 
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5. Summary  and  Future  Directions 

The phase field model  has  been  proven  to be much more powerful  than simply a 

numerical tool for solving the moving  boundary  problem  in alloy solidification. Once 

limited to the range of large undercooling  and supersaturation, the phase field model has 

been reformulated and  combined  with  other efficient numerical schemes such that 

dendrite solidification can be successfully  modeled  at  any temperature and composition. 

In addition, important yet difficult to measure,  materials anisotropies need  no longer be 

treated as adjustable parameters  in  simulation studies. Molecular dynamics and Monte- 

Carlo atomistic simulations are now  providing  the necessary anisotropies in a wide range 

of technologically relevant  metals. 

The excellent agreement  between  modeling  and experiment for the case of dendrite 

velocity  vs.  undercooling in pure  Ni illustrates just how far the field of solidification 

modeling has progressed  within  the  past  decade.  Yet the results also clearly define the 

future directions of the phase field modeling  research. The inability of the model to 

reproduce the observed change of slope of V vs. AT strongly suggest that impurities are 

playing a significant role. Therefore phase field modeling  and atomistic simulation must, 

in the future, concentrate on  the  question of aIIoying.  An efficient version  of  an alloy 

phase field model  has  only  recently  been developed and atomistic simulations of solid- 

liquid interface properties  in  binary alloys are still quite rare. Efficient modeling  of alloy 

solidification is also essential  from  the  technological point of view as all commercial cast 

or  welded materials are binary or multicomponent alloys. 
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7. Tables and Figures 

Table I. Summary of melting  points, solid-liquid interfacial free energies and 

anisotropies for various EAM pure  metals. 

Fig. 3.1 a) Top, plot of  the average order  parameter @ vs. the y direction at  a point along 

the solid-liquid boundary.  Results  were  obtained  from  a single configuration during an 

MD simulation of Ni. b)  Bottom,  Portion of the  solid-liquid  interface obtained from one 

Snapshot  of an MD simulation for the 100[010]  orientation. Solid atoms are shaded gray 

and liquid atoms are white  (see  text).  Superimposed as a thick line is the interface 

position corresponding to the $ = .7 contour. 

Fig. 3.2 Log-log plot of the  fluctuation  spectra, (IA(k)l’) vs. k, for pure Ni in three 

crystal orientations. The  solid  lines  indicate  a slope of k-2 (see eq. 3.4). 

Fig. 3.3 llbW(IA(k)12) vs. k 2  for three crystal orientations for pure Ni. The slopes of 

the lines are proportional to  the  interface stiffness and  a clear anisotropy is observed. 

Fig. 3.4 Fluctuation spectra for EAM Cu. 

Fig. 3.5 llbW(lA(k)12) vs. k 2  for EAM Au. 

Fig. 3.6 Initial configuration of atoms  used  in  the simulation of solid-liquid interface 

motion. The example shown is for pure  Ni. 

Fig. 3.7 Velocity of the solid-liquid boundary as a function of undercooling in pure Au 

for the low index directions 100, 110 and  1  11. The slopes of the curves at the low 

undercooling, as  shown  by  the  heavy  lines,.  yield the kinetic coefficient. 
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Fig.  3.8 Exponential decay constant, z normalized  by  the quantity I‘ vs. k 2 .  The 

slope of the lines is proportional to the  kinetic  coefficient p . 

Fig. 3.9 Comparison of the  interface  velocity  according to the  model of BGJ and those 

obtained from MD simulations. The data symbols  represent free solidification results. 

Fig. 3.10 Velocity  vs.  undercooling in the 1 11  direction for pure Au using  two  different 

cell sizes. The slower growth  observed for the large size system is consistent with  the 

findings of Burke et al. [ 1261. 

Fig.  3.11  Plane  of  atoms  parallel to the  solid-liquid  boundary  but  located  well  within the 

solid  phase. The white atoms  are  those  which  belong to the solid phase whereas the gray 

atoms denote liquid like or  “defect”  atoms.  Deep  within  the solid there exists only a few 

defective atoms. 

Fig.  3.12 Plane of atoms  parallel  to  the  solid-liquid interface but  located  well  within  the 

liquid  phase. Most of the  atoms  are  liquid like and  no six fold symmetry is observed. 

Fig.  3.13 Plane of atoms  at  the  solid-liquid  boundary.  Clusters of defect  (ie.  gray)  atoms 

are observed which  possess six fold symmetry as indicated by the heavy solid lines. Such 

regions represent stacking faults as can be seen by the offset of the atom  planes  from  the 

perfect FCC configuration (the light solid lines). 

Fig.  3.14 Mean square displacement  of Ni  atoms as a function  of  time for two  different 

temperatures. The slope of the lines at  long  times is proportional to the  diffusion 

coefficient. 

Fig.  3.15 The velocity-velocity  correlation  function  normalized by its value  at t = 0 vs. 

time for 1600  and 2000 K in Ni. The integral of the  curves  over  all  times  yields  the 

diffusion coefficient. 
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Fig. 3.16 The diffusion  coefficient of pure Cu (filled  circles)  and  Ni  (filled  squares) as a 

function of temperature.  The  vertical  lines  label  the EAM melting  points.  The  symbols 

filled with a cross  are  the  results of Alemany et al. [ 139,1401 and  the  open  circles  are  the 

experimental results of  Henderson  and  Yang [ 1411. The  symbol filled with "+" is the  ab- 

initio result from Pasquarello et al. [ 1421. 

Fig. 3.17 Log of the scaled  diffusion  coefficient D* vs.  the excess entropy for a variety 

of EAM metals and alloys and for Si using  the  Stillinger-Weber  potential [147]. 

Fig. 3.18 Mean square displacement of  Ni  and Al atoms  vs.  time  in  liquid Ni20AlgO using 

first principles atomistic computations  (VASP).  The  temperature of the  simulation was 

1700K. 

Fig. 3.19 Fluctuation spectra for Cu-Ni  at 1750K. The composition of the liquid phase 

was approximately X ,  = 10.1 % and for the  solid X ,  = 5.0 %. 

Fig. 4.1 Dendrite velocity  vs.  undercooling  in  pure Ni computed  using 3D phase  field 

simulations (solid  line) by Bragard et al. [45]. Open  symbols are the  experimental  results 

by Willnecker et al. [169] and  Lum et al. [170]. The  kinetic coefficient, as  well as the 

crystalline and kinetic anisotropy,  were  taken from MD studies and  therefore there are no 

adjustable parameters in the  phase  field  model. 
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